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ABSTRACT 

 

In recent years, passively mode-locked quantum dot lasers have shown great promise as 

compact, efficient and reliable pulsed sources of light for a range of precision and high 

performance applications, such as high bit-rate optical communications, diverse 

waveform generation, metrology, and clock distribution in high-performance computing 

(HPC) processors. For such applications, stable optical pulses with short picosecond 

pulse durations and multi-gigahertz repetition rates are required. In addition, a low pulse-

to-pulse timing jitter is also necessary to prevent errors arising from the ambiguity 

between neighboring pulses. In order to optimize pulse quality in terms of optical 

characteristics such as pulse shape and pulse train behavior, as well as RF characteristics 

such as phase noise and timing jitter, understanding the nonlinear output dynamics of 



vii 

such devices is of critical importance, not only to get a sense of the regimes of operation 

where device output might be stable or unstable, but also to gain insight into the 

parameters that influence the output characteristics the most, and how they can be 

accessed and exploited to optimize design and performance for next generation 

applications. 

In this dissertation, theoretical and experimental studies have been combined to 

investigate the dynamical trends of two-section passively mode-locked quantum dot 

lasers. On the theoretical side, a novel numerical modeling scheme is presented as a 

powerful and versatile framework to study the nonlinear dynamics specific to a device, 

with device-specific parameters extracted over a range of operating conditions. The 

practical utility of this scheme is then demonstrated, first, in an analytical capability to 

interpret and explain dynamical trends observed in experiment, and subsequently, as a 

predictive tool to guide experiment to operate in a desired dynamical regime. Modeling 

results are compared to experimental findings where possible. Finally, optical feedback 

from an external reflector is experimentally studied as an additional control mechanism 

over the output dynamics of the device, and shown to enable invaluable insight into the 

behavior of the RF and optical spectra of the output. Together, the theoretical and 

experimental findings of this dissertation are shown to offer a systematic approach to 

understand, control and exploit the dynamical trends of passively mode-locked two-

section quantum dot lasers. 
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Chapter 1  

Introduction 

 

Semiconductor lasers represent the most common type of laser in use today, with a range 

of applications spanning diverse fields of application from ultrafast optical 

communications, optical data storage and spectroscopy, to medical imaging and 

environmental sensing, among others. Depending upon their structural composition and 

operating conditions, they exhibit a rich diversity in their output dynamics. Extensive 

theoretical and experimental studies over the past five decades have sought to improve 

device performance and reliability using two broad approaches – i.) through 

improvements in materials growth/processing techniques, and designing and engineering 

better laser cavity structures, and ii.) using an external control mechanism to manipulate 

output device dynamics, while in operation. 

The materials growth, processing and device design aspect of performance enhancement 

has seen numerous achievements since the early sixties. Following the first 

demonstrations of p-n junction GaAs lasers in 1962 [1, 2], which were plagued by very 

low output efficiencies due to the high optical and electrical losses, significant 

performance improvements were achieved with the double heterostructure (DH), 

whereby, improved carrier confinement was achieved by sandwiching a relatively narrow 

bandgap layer between two layers of more broadband material [3, 4]. This led to a drastic 

reduction of threshold current density in such devices, along with stable continuous wave 

emission at room temperature. 
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The next key milestone was the realization of the power of confining carriers in lower 

dimensional structures. As dimensionality decreases, the density of states function 

transitions from continuous or quasi-continuous to a discretized form. For a given energy 

range, the number of carriers required to fill-out the available states reduces substantially 

with a decrease in dimensionality, which makes it easier for the device to achieve 

transparency, and eventually, population inversion for stimulated emission [5]. This 

paved the way for the demonstration of the first quantum well (QW) structure in 1978 by 

Dupuis et al [6], where carrier confinement in one dimension enabled a further reduction 

in threshold current density. 

In 1982, Arakawa and Sakaki theoretically predicted vast improvements to the 

performance of the conventional quantum well laser with three-dimensional carrier 

confinement, by virtue of lower threshold, temperature-insensitive operation [7]. While it 

took more than a decade for such structures to be realized, the development of the first 

quantum dot (QD) laser in 1994 [8] stimulated extensive efforts to grow, process and 

characterize such structures, so that the predictions of lower threshold currents and 

temperature-insensitive operation were soon to come true. In the early 2000s, a group at 

the University of New Mexico pioneered the fabrication of the so- a   d “    -in-a-

W   ” ( WE  )           ,   ad ng to record-low threshold current densities of 10 A/cm
2
 

[9, 10]. 

In the following year, the group at the University of New Mexico also pioneered the 

demonstration of the first passively mode-locked quantum dot laser [11]. Since that time, 

various groups around the world have actively pursued theoretical and experimental 

research into various aspects of passively mode-locked devices aimed at improving their 
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performance with innovative growth, processing and device-design ideas on the one 

hand, and techniques seeking to understand, control and exploit the nonlinear dynamics 

of the device output using an external control mechanism, on the other. The overarching 

theme of this dissertation pursues the latter approach. 

 

1.1 Motivation and Dissertation Objectives 

Since their first demonstration over a decade ago [11], quantum dot mode-locked lasers 

(QDMLLs) have generated considerable interest as promising alternatives to quantum 

well (QW) sources, owing to their demonstrably superior performance characteristics ([5] 

and [12-17]). Much of this interest in QDMLLs arises from the fact that certain properties 

unique to QD systems, such as low linewidth enhancement factors and reduced values of 

unsaturated gain and absorption enable a considerably wider map of operational stability, 

compared to their bulk and quantum well (QW) counterparts [14-17]. This is important, 

because most target applications require stable pulse generation over variable operating 

conditions. For instance, typical operating environments such as data centers require 

components to be able to tolerate high temperatures accompanied by rapid and 

considerable heat generation within the system. Consequently, devices need to be 

engineered to be able to sustain stable output pulses over a range of operating conditions 

[19-23]. This, in turn, necessitates the need to not only map-out the parameter space of 

the device over a range of possible operating conditions, but also to gain insight into the 

functional parameters that are unique to QD systems and modify the properties of the 

device, compared to QW-based devices. With this objective, although a considerable 

amount of effort has gone into developing robust analytical and numerical models to 
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describe passive mode locking in semiconductor lasers (and even modified specifically 

for QDMLLs), the information available in the literature about the properties unique to 

QD structures that give them superior performance characteristics relative to QW 

structures, and how they can be accessed and exploited so as to optimize device 

performance, is rather scarce. This has led to the associated theoretical and experimental 

work following two distinct paths, with the former focusing on developing 

analytical/numerical models of varying degrees of complexity to describe specific 

physical processes/phenomena, while the latter typically relies on a process of iterative 

design through extensive testing and characterization.  

1.1.1 Theoretical Investigation – Modeling and Simulations 

On the theoretical side, as more physical effects and processes are incorporated into the 

analysis, the model grows in complexity and evolves to encompass a large parameter 

space. But while this added complexity might enable a better understanding of the 

underlying device physics and operation, the lack of access to realistic values of many of 

the associated parameters at various operating conditions severely hinders the process of 

practical device design/engineering through numerical simulation. Thus, it is highly 

desirable to have a robust and systematic formalism, whereby a theoretical modeling 

scheme that is mathematically elegant and computationally tractable, yet able to 

accurately model/predict key dynamical trends specific to individual devices, can be used 

as a guide and complement to experiment.  

To this end, the primary objective of this dissertation is to develop a systematic approach 

toward using a Delay Differential Equation (DDE) – based model for passive mode-

locking in a semiconductor laser [24-27] as a powerful and versatile tool to simulate 
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QDMLL device behavior over a range of operating conditions, and to potentially serve as 

a quantitative map to guide device design. Recent work has shown that variants of this 

model can be used to study phenomena such as injection locking [28], and a multi-section 

version of the model has been recently developed to study passive mode-locking [29, 30]. 

Relative to the other models used to study passive mode locking in semiconductor lasers, 

the DDE model has a parameter space of just 9 parameters that can be mostly extracted 

from measurable physical quantities.  

In fulfilling this objective, one of the key accomplishments of this dissertation involved 

the derivation of novel expressions to transform experimentally measured quantities to 

dimensionless model parameters. This, in turn, led to some novel findings, such as an 

alternative method of estimating the carrier relaxation ratio of a QDMLL. The standard 

technique to determine this parameter, which is defined as the ratio of the gain relaxation 

rate to the absorber relaxation rate, involves measuring gain and absorber recovery times 

using pump–probe techniques, individually for the semiconductor optical amplifier [31] 

corresponding to the gain section, and for the saturable absorber [32, 33] corresponding 

to the absorber section of the two-section laser. The approach discussed in this work 

provides an analytical expression for the carrier relaxation ratio as a function of static 

parameters that can be easily measured on a multi-section QD laser test structure over 

temperature, current density, bias voltage and wavelength. This allows mapping-out the 

carrier relaxation ratio of the QDMLL over a range of operating conditions, each of 

which can then be used as an input parameter in the DDE model in order to simulate 

device performance at that condition, while circumventing the need to perform pump-

probe measurements. 
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In using the DDE model in its original form, it was found that the important operational 

characteristics of the device under study are captured without the need for additional 

equations or parameters, thereby preserving its relatively simple formalism. For example, 

numerous analyses are shown to simulate experimental trends accurately, without the 

need to include additional equations/transitions specific to dot energy levels in the model. 

Thus, the simulations accurately predict commonly observed experimental phenomena, 

such as pulse narrowing with increasing absorber bias. In addition, the model and 

simulations enable novel insight into properties unique to QD systems, such as the lower 

values of unsaturated gain and absorption compared to the corresponding values for QW 

devices and key trends in the behavior of the linewidth enhancement factor close to 

threshold in QD devices. In other words, the properties inherent and unique to QD 

structures appear to manifest in the measurement-extracted model parameters.  

Finally, important trends in the nonlinear dynamics of the device output, such as pulse 

asymmetry-switching, split-pulsation and stable harmonic mode-locking are found to be 

not only simulated by the methodology developed in this dissertation, but the model is 

able to provide invaluable insight into such phenomena, as well as being able to 

approximately predict the operating conditions under which such effects may be found. 

This is critical to achieving controllability over device behavior. 

1.1.2 Experimental Investigation 

The second main objective of this work is to acquire insight into the output nonlinear 

dynamics of a device through experimentation. Such a methodology complements 

theoretical analyses in two important ways. First, experimental setups provide the 

ultimate test bed for the investigation of theoretical predictions. In turn, the dynamical 
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trends unveiled during experimentation might reveal a certain trend(s), not predicted 

previously by the model, which could provide a prototypical case for further theoretical 

analysis.   

Secondly, there are certain instances, where the limitations inherent in the model may 

leave experimental analysis as the sole option to get a sense of the dynamical trends of 

the device output. A common example of such an instance is when investigating the 

device behavior well above threshold, where the linewidth enhancement factor seen by 

the pulse becomes extremely difficult to estimate. In such cases, meticulously conducted 

experiments provide an indispensable tool to get a sense of the output dynamics. This is 

also the case when the number of variables/control parameters starts increasing, as in the 

case of externally-applied optical feedback at elevated temperature (discussed in detail in 

Chapter 5), and a complete characterization of device output may require information in 

addition to time-domain pulse width data, such as RF and optical spectral characteristics.  

 

1.2 Brief Overview of Nonlinear Laser Dynamics 

Irregular pulse shape and erratic intensity fluctuations have been known to scientists, 

engineers and other professionals working with all types of lasers, since the very first 

demonstration of a working laser by Theodore Maiman [34], when it was found that the 

output of the ruby laser displayed irregular spiking. The first correlations of laser 

dynamics to nonlinear dynamics and chaos were made by Haken [35, 36], wherein he 

proposed the isomorphism of the dynamics of certain types of lasers to turbulent fluid 

flow in atmospheric dynamics [37], so that the mathematical framework used to model 

the dynamics of lasers could possibly follow from the framework used to study 
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atmospheric dynamics. However, it was not until the early 1980s, after years of very 

careful and meticulous analyses of extensive experimental data sets and trends, that laser 

physicists understood that the pulsating outputs were driven by light-matter interactions 

within the laser cavity, as opposed to external perturbation due to environmental 

fluctuations [38]. In the early 1990s, the wide acceptance of the idea that lasers exhibit 

the same types of bifurcations (qualitative change of dynamical behavior) as oscillating 

mechanical, chemical and biological systems, coupled with the shift of interest to the 

nonlinear dynamics of semiconductor lasers (wherein understanding such phenomena 

becomes especially important, considering the widespread use of such lasers as discussed 

in the previous section), propelled the field of Nonlinear Laser Dynamics to a hot topic of 

research worldwide [38-43]. Given the ever-increasing range of applications where such 

lasers are finding use, extensive theoretical and experimental work has been undertaken 

by various groups across the world over the last couple of decades, resulting in an 

improved understanding of the output dynamics of such devices. One common approach 

is to solve the system of equations describing the system repeatedly while sweeping over 

one particular parameter, known as the control parameter. A plot of the output dynamics 

as a function of the control parameter, also referred to as a bifurcation diagram, is then 

generated, as shown in Fig. 1-1 [27].  
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Figure 1-1: Prototypical bifurcation diagram showing regimes of dynamical behavior at the 

output as a function of the control parameter (in this case, the unsaturated gain parameter). For 

a complete analysis, see [27]. 

 

Points on the diagram where a qualitative change in the dynamical behavior of the system 

are seen (marked a-f in Figure 1-1), i.e., bifurcation points, are then individually analyzed 

in detail. The objective is to be able to predict the dynamical transitions characterizing 

this behavior, so that unstable regimes of operation may be avoided, and transitions to 
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stable regimes with desirable characteristics (such as stable harmonic mode-locking) may 

be controlled and exploited to benefit target applications. 

 

1.3 Key QD Laser Parameters Expected to Impact Output Dynamics 

A comparison of experimentally – determined regions of stable mode-locked operation 

for QW and QD devices of similar structure and composition is shown below in Fig. 1-2 

([15], [44]): 

 

a.) 

 

b.) 

Figure 1-2: Mode-Locking Stability Maps for a.) a QW device, and b.) a QD device with similar 

structure and dimensions. 
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Clearly, the QD device shows a much wider region of operational stability, as compared 

to the QW device. In this section, the important laser parameters responsible for this trend 

and their expected impact on the output pulse dynamics are briefly reviewed [5]. 

1.3.1 Threshold Current Density 

The three-dimensional spatial confinement of carriers in quantum dots allows only a 

restricted set of energy levels for occupation. Thus, for a given energy range, the number 

of carriers required to completely fill the required energy levels is considerably less than 

for higher dimensional nanostructures, such as bulk or QW structures. In addition, 

advances in growth and device processing techniques have meant reduced active region 

volumes enabling tighter carrier confinement, which translates to improved 

recombination rates. 

The combination of the above factors makes it easier to achieve the population inversion 

required for lasing. This property is also true for mode-locked operation, since in most 

cases, the onset of mode-locking occurs at lasing threshold. This low threshold translates 

to lower levels of non-stimulated emission, and hence, to lower levels of spontaneous 

emission noise.  

1.3.2 Temperature Resilience 

Due to the delta function-like nature of their density of states, QD lasers exhibit a 

considerable degree of resilience to temperature-variation, making them attractive for 

uncooled operation in environments where a   d   a  a   n          a      a     

 x     d.     n        a  d   n   a  d   a      d -     d     a   n              n     

ground state, and continued pulse generation in the excited sta          -       (   -23], 
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[45]). Furthermore, the mode-locking pulse quality has been shown to improve at 

elevated temperatures in these works, owing to a combination of faster absorber recovery 

times and decreasing values of unsaturated gain and absorption, both of which tend to 

favor mode-locked operation. 

Thus, QDMLLs a    x     d     x        a            n  a   n  n         nd   a           

     ,  a         a  a    n   -switch to the excited state may be expected.  

1.3.3 Ultrafast Carrier Dynamics 

One of the quintessential requirements for mode-locking action is the interplay between 

gain and absorber saturation and recovery times. As will be discussed in Chapter 2, the 

physical mechanism driving passive mode-locking is determined by this interplay, which 

opens up a brief window of net gain (where the net gain exceeds the total loss in the 

cavity), enabling pulse generation. The faster the absorber saturation and recovery 

timescales, the narrower the output pulses. It has been shown that the absorber recovery 

time decreases rapidly with applied absorber bias [32] and operating temperature [33], 

although the effect of the former is more drastic. 

The ratio of these timescales is quantified by a parameter defined as the carrier relaxation 

ratio: 

 
gainabs   

(1-1) 

As will be seen in the following chapters, the carrier relaxation ratio of a device is a key 

parameter required to model the passive mode-locking process. 
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1.3.4 Lower Values of Unsaturated Gain and Absorption 

It was mentioned in §1.3.2, that lower values of unsaturated gain and absorption have 

been associated with better pulse quality at elevated temperatures. The numerical model 

used in this dissertation requires these two quantities as input variables, and numerous 

dynamical studies using the model have performed bifurcation analyses with the 

unsaturated gain or absorption as a bifurcation parameter, resulting in a range of 

dynamical regimes associated with the output [24-27]. This is indicative of the fact that 

both parameters are important in determining the output dynamics of the system. 

1.3.5 Gain Saturation 

Yet another feature unique to quantum dots is their abrupt gain saturation with carrier 

density compared to higher dimensional nanostructures, as seen from the modal gain 

characteristics below [15]: 
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Figure 1-3: Normalized modal gain versus carrier density, in bulk (red), QW (blue) and QD 

(green) media [15]. Note the fast rise and rapid saturation of the QD (green) curve. 

The saturation parameter quantifies the gain saturation effect, and is given by the 

expression: 

  

   g

q

NNg

NNq
s






mod

mod
 

(1-2) 

where,   NNg  mod  and   NNq  mod  denote the differential gain and absorption 

with respect to carrier density, respectively, while 
g  and q  denote the transverse modal 

confinement factors in the gain and absorber sections, respectively. 
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The gain saturation effect leads to very low values for the differential gain in the 

denominator of equation (1-2), indicating that higher values of the saturation parameter 

favor mode-locking. 

 

1.3.6 Linewidth Enhancement Factor 

One of the most important (yet elusive) parameters characterizing nanostructured lasers is 

the linewidth enhancement factor, also known as the Henry   - factor [46] (in honor of 

Charles Henry, the scientist who first proposed it) or the amplitude-phase coupling factor. 

It uses the Kramers –Krönig relation to relate the differential index of refraction to the 

differential gain of the medium 

  
  

 
 Ng

Nn




















4

Im

Re
 

(1-3) 

This parameter is crucial to semiconductor lasers, and quantifies the asymmetry of the 

gain spectrum. A high value of this quantity is associated with numerous deleterious 

effects, including pulse chirp, RF linewidth-broadening and phase noise, pulse-to-pulse 

timing jitter, etc. Thus, reducing this parameter to as low a value as possible is highly 

desirable in order to simultaneously improve device performance in numerous aspects 

[47]. 

As will be seen in the following chapters, this parameter is also predicted to have a 

dramatic impact on the temporal pulse dynamics at the output. Considering the 

ambiguities inherent in physically measuring this parameter, simulations serve as an 
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excellent tool to analyze the nonlinear dynamics of the output as a function of the   - 

parameter. 

As mentioned earlier in § 1.1, insight into the underlying physical mechanisms driving 

the dynamical transitions at the output is not only essential to predict and avoid regimes 

of dynamical instability, but also to achieve controllability over device behavior. To this 

end, this dissertation aims to serve as a detailed theoretical and experimental 

investigation into whether and how the various parameters discussed above, critical to the 

mode-locking performance of a device, can be exploited/manipulated to analyze observed 

dynamical trends, or to predict a desired output dynamic, particularly in the context of 

their uniqueness to QD materials. 

 

1.4 Organization of the Dissertation 

Chapter 2 starts with a detailed discussion of the numerical model used in this work. 

After a brief introduction to some of the more advanced treatments being used to model 

passive mode-locking, the Delay Differential Equation (DDE) formalism originally 

presented in [24]-[26] is introduced. The chapter then proceeds to derive novel equations 

to transform data measured experimentally on a given device to dimensionless model 

parameters, thereby developing a scheme to make the model device-specific. 

In Chapter 3, the analytical capabilities of the model are presented. After a brief 

description of the layer structure and geometry of the device, a novel approach toward 

estimating the carrier relaxation ratio of a device from gain and loss measurements, 

specific to its operating conditions is discussed. The approach discussed therein provides 

a convenient and elegant alternative to conventional pump-probe techniques used to 
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typically infer this value. The chapter then proceeds to perform parameter sensitivity-

analysis studies devoted, respectively, to the linewidth enhancement parameter and to the 

unsaturated gain and absorption parameters in order to get a sense of how parameters 

extracted from an actual QDMLL impact the output dynamics. Finally, the chapter 

demonstrates the powerful capabilities afforded by the model in analyzing dynamical 

anomalies, such as pulse asymmetry-reversal. 

Chapter 4 continues to explore the powerful capabilities of the model, embarking on an 

investigation of its predictive capabilities. The first part of this chapter studies 

instabilities in the output dynamics. The newly-developed formalism of the DDE model 

is used to perform a detailed analysis of what combination of input parameters will lead 

to device operation in an unstable dynamical regime at the output. The second part of the 

chapter exploits this capability to predict what combination of inputs will generate a 

desired output dynamical regime. Based on this approach, a promising scheme to 

dynamically switch a device from one stable dynamical regime to another is proposed, 

with the goal of producing higher repetition rates using just electrical biasing controls, as 

opposed to re-engineering the device. 

A     a           x    a   n          d  ’  ana     a  and    d        a a          n 

Chapters 3 and 4, Chapter 5 is devoted to a detailed experimental investigation of the 

behavior of the RF and optical spectra of the device at elevated temperature, well above 

threshold, with and without the influence of externally-applied optical feedback. This 

chapter demonstrates the power of combining theory and experiment as complementary 

tools to investigate the complicated dynamical trends of a system. Based on previous 

     and       d  ’     d     n            d   d -locking performance at elevated 
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      a     ,      n d            d  ’     d     n               a         a  d      e 

linewidth enhancement factor in determining output pulse shape and dynamics, this 

chapter experimentally investigates the dynamical aspects currently unobtainable from 

the model, namely, the dynamics of the RF and optical spectra. While the former (RF 

dynamics) is shown to offer qualitative information about the behavior of the linewidth 

enhancement factor well above threshold, and under what conditions of external control 

(applied optical feedback) it can be reduced, the latter enables invaluable insight into 

effects seen in certain devices, such as spectral hole formation. 

Finally, concluding remarks and possible future directions are given in Chapter 6. 
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Chapter 2  

A Novel Delay Differential Equation (DDE) – Based Formalism 

 

Robust modeling techniques can provide a powerful and indispensable tool to design and 

engineer QDMLLs to meet the ever-more stringent performance constraints of next-

generation devices. While a considerable amount of effort has gone into developing 

detailed analytical and numerical models to describe mode-locking in semiconductor 

lasers (and even modified specifically for QDMLLs) [1]-[6], the information available in 

the literature about device parameter values unique to QD-based structures and how they 

can be accessed and exploited to optimize device performance is very limited. This has 

led to the associated theoretical and experimental work following two distinct paths, with 

the former focusing on developing analytical/numerical models of varying degrees of 

complexity to describe specific physical processes/phenomena constituting the mode-

locking process, while the latter typically relies on a process of iterative design through 

extensive testing and characterization. On the theoretical side, as more physical effects 

and processes are incorporated into the analysis, the model grows in complexity and 

evolves to encompass a large parameter space. Although this added complexity should 

enable a better understanding of the underlying device physics and operation, the lack of 

parameters that can be easily measured, coupled with the number of required parameters 

often limits the practical utility of more rigorous models.      

To this end, one of the primary objectives of this dissertation is to develop a powerful 

numerical modeling capability to simulate actual passively mode-locked QD lasers using 

parameters measured on the device. As will be seen in the following two chapters, the 
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technique needs to be versatile in order to be used across devices and over a range of 

operating conditions as an analytical tool, whereby observed phenomena can be 

interpreted using the model, but also as a predictive guideline for the design and 

operation of devices. 

At the same time, the Delay Differential Equation-based formalism of the model ensures 

a robust mathematical framework at the core, lending itself extremely well to the study of 

the rich nonlinear laser dynamics inherent in the output of such devices. Complex 

mathematical ideas, such as bifurcation dynamics, can be used to predict and analyze 

abrupt and often unsolicited transitions in the device output [7]. In addition, the 

formalism can be extended in a natural way to include complex effects such as 

optoelectronic and optical feedback ([8], [9], [10]) and optical injection [11]. 

Consequently, the subject of this chapter is to develop a systematic method to model 

passive mode-locking [12]-[14] that enables device-specific simulation and analysis, 

while preserving the underlying mathematical framework. At the same time, reducing the 

parameter-space of the model by constraining the majority of the parameters to values 

measured on the device under study is also a priority.  

The chapter is organized as follows.  Section 2.1 starts with a brief overview of the 

fundamentals underlying the passive mode-locking process in section 2.1.1. A recently-

developed, comprehensive model to describe passive mode-locking in QD lasers based 

on the Traveling Wave formalism is then discussed in section 2.1.2, followed by a 

simplified version in section 2.1.3. Section 2.2 then discusses the derivation of the Delay 

Differential Equation model from the simplified Traveling Wave model in detail. Next, in 

section 2.3, the extension of the model to a novel formalism to simulate QDMLLs with 
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parameters measured on the device is presented. Concluding remarks are presented in 

section 2.4. 

2.1 Introduction 

2.1.1 Fundamentals of Passive Mode-Locking 

Figure 2-1 [15] shows the essential components required for a laser cavity to 

generate passively mode-locked pulses. 

 

 

 

 

 

 

Figure 2-1: Schematic of passive mode-locking in a  2-section laser diode [15] . 

 

The saturable absorber possesses the quintessential property of an intensity-dependent 

absorption profile, such that its absorption decreases with incident optical intensity. This 

feature acts as a discriminator between pulsed and continuous wave (cw) operation of the 

device, so that passive mode-locking necessarily requires an intracavity saturable 

absorber element. Unlike other methods of producing mode-locked pulses, namely, active 

and hybrid mode-locking, passive mode-locking does not require an external reference 

source for pulse formation, and is a self-starting, self-sustaining process as described 

next. 

Laser emission is built-up from the spontaneous fluctuations of light intensity within the 

cavity, so that the laser modes begin to oscillate in noisy bursts, with uncorrelated phases. 

Saturable Gain Saturable Absorber 
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If one of these bursts has sufficient fluence to match the saturation fluence of the 

saturable absorber medium, it will bleach the absorption. This means that around the peak 

of the burst, the strong intensity causes the loss to decrease sharply, whereas the wings of 

the burst are not quite as energetic, and are attenuated. 

At steady state, the leading edge of a pulse bleaches the absorption such that the absorber 

saturates faster than the gain, thereby opening a brief window of time during which net 

 a n  x   d     a       (    n        d     n          a     a      “n    a n   nd  ”). 

However, because the absorber also recovers to its initial state of high loss faster than the 

 a n         ,       a   n   d                   a   n a  d.       d   n             “n    a n 

  nd  ”   a         a       a n d,        a   n  n     a  a n d    n     gain exceeds the 

total loss by the maximum amount, as shown in Fig. 2-2. 

 

  

 

 

 

 

Figure 2-2: Schematic showing pulse formation determined by the dynamics of net gain and total 

loss [15]. 

 

Outside each net gain window, the total loss exceeds the gain, so that the intensity goes to 

zero between pulses. At steady state, this interplay between gain and absorber dynamics 
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is self-sustaining and periodic, so that pulse generation follows this same behavior [15]-

[17]. 

 

2.1.2 The Traveling Wave Model 

          Several numerical models of varying degrees of complexity have been 

developed to describe passive mode-locking in semiconductor lasers using the 

traveling wave formalism. One of the most sophisticated and rigorous schemes to 

model passive mode-locking in quantum dot lasers was developed in recent works by 

Rosetti et al ([1]-[4], [6]), wherein, a range of complex phenomena, such as the time-

varying QD optical susceptibility, the inhomogeneous broadening of the density of 

states of the entire QD ensemble, as well as the homogeneous linewidth associated 

with each QD interband transition were taken into account. The Finite Difference 

Traveling Wave (FDTW) model was used to express the spatiotemporal field 

evolution individually in the ground state (GS) and the first excited state (ES1) using 

the following system of coupled Partial Differential Equations (PDEs) [6]: 
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(2-1b) 

where,  ztgk ,  represents the QD material gain at the wavelength resonant at 

,, 1ESGSk   xy is the confinement factor within the QD layers and i are the 

intrinsic waveguide losses. The convolution operation performed in parentheses in the 
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first term on the right hand side of each equation above describes the field modified 

by a Lorentzian filter of width   in order to model the finite gain spectral bandwidth, 

which is limited by the QD inhomogeneous gain broadening. 

In the second term on the RHS of equations (2-1a) and (2-1b),  ztgGSxy ,  and 

 ztgESxy ,
1

  represent instant changes in the real part of the propagation constant 

induced by the QD ES at the GS wavelength and vice-versa, where, 



  
ES1 GS

 2  ES1 GS 
2  

(2-2) 

The boundary conditions for the forward and backward-propagating waves are given by: 

   0,0, 1 tERtE kk

   

(2-3a) 

    12 ,,,, ESGSkLtERLtE FP

k

FP

k    

(2-3b) 

where FPL  is the total Fabry-Perot cavity length, while 1R and 2R represent power 

reflectivities at the end facets. 

Further, the gain/absorber dynamics in the corresponding section of the cavity (gain or 

saturable absorber) are described by a set of 3 coupled rate equations to represent level 

transitions within the dot (GS, ES1, ES2), plus 2 additional equations to model the carrier 

dynamics in the quantum well and barrier states, respectively. The carrier dynamics 

specific to each section is carefully modeled by the authors by taking into account current 

injection into the gain section and reverse bias voltage-induced effects (such as 
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thermionic escape or tunneling dynamics, depending upon the applied voltage strength). 

The rate equations in this case describe the time-evolution of the occupation probability 

of the k
th

 QD state in the cavity section z: 

 
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dt
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(2-4) 

In the above equation,  ztR in

k ,  and  ztRout

k ,  represent respectively the in and out-

scattering rates, while  ztR s

k ,  represents the radiative and non-radiative recombination 

rate. 

While a detailed description of the three terms listed above can be found in [4], the last 

term on the RHS of (2-4) represents the stimulated emission rate given by: 

 
 

      


 


 ztEeztEe
DWN

ztg
ztR k

t

k

kkD

kxystim

k ,,
,2

, 


 

(2-5) 

where     1,2, 0  ztgtzg kkk  , W is the ridge width, DN is the QD surface density 

and kD is the degeneracy of the k
th 

QD state. Finally, kg0 is the material gain coefficient 

for the k
th

 QD state. 

As mentioned before in this section, the model discussed above is one of the most 

rigorous and accurate schemes available in the published literature. However, from the 

standpoint of using the model as a robust theoretical framework for the design and 

performance analysis of real devices, certain challenges arise that limit its practical 

utility. 
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Firstly, the standard approach to solving the system of equations (2-1) – (2-5) involves 

the use of Finite Difference Time Domain (FDTD) techniques, whereby, the spatio-

temporal field can be solved for in the longitudinal direction using a two-dimensional 

grid. Each step of the simulation involves solving the system of equations above over a 

spatial grid with a step size z , coupled to a temporal grid with a step size t , using the 

expression tvz g . 

Typical simulation time steps are chosen to be on the order of a few femtoseconds, in 

order to enhance resolution and improve accuracy. However, the coupled spatio-temporal 

formalism also means that the finer the resolution of the two-dimensional grid, the more 

computationally expensive the simulation. 

Second,  a glance at the system of equations, and in particular, the fact that each term in 

the rate equation (2-5) is itself described by an equation, gives a sense of the vastness of 

the parameter space involved. A good example of this is seen in the table of simulation 

parameters presented in [4], where the combination of requisite material and device 

parameters amounts to a total of 23. 

Many of these parameters, such as interband relaxation and recombination times, require 

dedicated experimental arrangements (such as time-resolved pump-probe spectroscopy 

setups) for their individual measurement, which often translates into a tedious setup-and-

measurement process for a single model parameter. 

In other cases, the model parameter could be a purely theoretical construct, unattainable 

by measurement (for instance, the Pauli blocking factor, invoked in some models e.g. 

[5]). In such cases, the value used is often a standard value quoted in the literature. 
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Further, the specific set of parameter values will likely differ widely from one device to 

another, which makes modeling a range of different devices with different operating 

parameters, a tedious and cumbersome process. 

For all these reasons, it is highly desirable to have a model with a tractable parameter 

space involving parameters that can be easily extracted on any given device, across a 

wide range of different operating conditions. 

 

2.1.3 The Simplified Traveling Wave Model 

A series of simplifying assumptions can dramatically reduce the complexity of the system 

of equations (2-1) – (2-5). Any concomitant reduction in accuracy is negligible for most 

purposes, as will be seen in numerous instances in the following chapters.  

The first major simplifying assumption is the abstraction of a standard two-section linear 

semiconductor laser cavity to a ring cavity, as shown in Figure 2-3 [13]. 

In the ring cavity diagram in Figure 2-3, coordinate z is measured along the cavity axis. 

Interval )( 4332 zzzzzz  corresponds to the absorbing (amplifying) section. A 

spectral filtering (bandwidth limiting) element is placed between 5zz  and Lzz  1 , 

where L is the total cavity length. Intervals 21 zzz   and 54 zzz   represent a 

passive medium. 
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Figure 2-3: Abstraction of a two-section linear cavity to a ring cavity [13]. 

 

Next, unidirectional field propagation is assumed so that only one of the two counter-

propagating waves needs to be considered. 

The combination of the above two assumptions, namely, abstraction to a ring cavity 

geometry with unidirectional wave propagation, enables use of the lumped-element 
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approach, whereby the interaction of the intracavity field with the laser medium can be 

treated as a sequence of independent stages. Thus, even though the propagating pulse 

experiences the effects of distributed gain, loss and material dispersion simultaneously, 

the formalism above allows segregating the carrier-field interaction as a traveling wave 

interacting with a lumped gain element, a lumped absorber and a spectral bandwidth filter 

(associated with a finite gain bandwidth) in sequence. 

The third major simplifying assumption is to discard the intricacies associated with 

modeling the device using the barrier-well-dot hierarchical formalism used in [4] and [5], 

and replace the considerably complex detailed-balancing scheme buried in the rate 

equation (2-4) (where it may be recalled that each individual term on the RHS is itself 

described by an equation comprised of a set of parameters) with a single and surprisingly 

simple equation that assumes a linear dependence on the medium carrier densities. Thus, 

two equations describing the temporal evolution of carrier densities in the gain and 

absorber sections replace the set of rate equations associated with (2-4). 

Finally, only ground state lasing is considered. Under this set of simplifying assumptions, 

the following generic (and considerably simpler) traveling wave model is employed: 

 

 

(2-6) 

 

(2-7) 

In equations (2-6) and (2-7) above, the subscript )( qkgk  corresponds to the gain 
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 ztN qg ,,  denote carrier densities in the gain/absorber sections, while the variables 

tr

qgN , are the carrier densities at transparency in the corresponding section. The parameter 

v  is the light group velocity, assumed constant and equal in both sections. The 

parameters qgqgqg g ,,, ,,  and qg , are, respectively, the linewidth enhancement factors, 

differential gains, transverse modal fill factors and carrier density relaxation rates in the 

gain and absorber sections. The parameters gJ and  0qJ  denote the injection current 

densities in the gain and absorber sections, respectively. 

Since the passive sections do not contain gain or absorber material, and consequently, no 

carrier densities, the evolution of the electric field in these sections may be written as: 

 

 

(2-8) 

Material gain dispersion (including dispersive effects due to artificial elements such as 

distributed Bragg reflectors), are incorporated through the lumped spectral filtering 

section.  

If  f̂  represents the frequency domain spectral filtering function, the transformation of 

the electric field envelope by this section may be expressed as: 

     51 ,ˆˆ,ˆ zEfLzE    

(2-9) 

where,  5,ˆ zE   and  LzE 1,ˆ   are the Fourier transforms of  5, ztE  and  LztE 1, , 

respectively. Material gain dispersion, including dispersive effects due to other cavity 

elements such as distributed Bragg reflectors, are incorporated through the lumped 
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spectral filtering section. With the mathematical framework now in place for the lumped-

element treatment of carrier-field interactions within the cavity, we are now ready to 

make the transition from the Traveling Wave formalism to an equivalent Delay 

Differential Equation (DDE) formalism. In the following section, we follow the treatment 

in [13] to summarize a series of mathematical definitions and transformations and derive 

the DDE model from equations (2-6) to (2-9). While the key steps outlining the 

transformation are shown here, detailed derivations are given in Appendix A.  

 

2.2 The Delay Differential Equation (DDE) Model 

Equations (2-6) and (2-7) may be re-cast in terms of the normalized 

coordinates     ,, zt , where   vztq    

(2-10a) 

 vz q  , 

(2-10b) 

 where the normalizing factor is the absorber recovery time  
qq  1 . The absorber 

recovery time determines the pulse width, so that the advantage of making this parameter 

the characteristic timescale is to normalize all quantities in the equation to a critical 

timescale in the problem, which ensures that there is sufficient temporal resolution to 

obtain complete information for all constituent processes. With this coordinate 

transformation, equations (2-6) and (2-7) may be expressed as: 
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(2-13) 

The next step is to transform equations (2-11) to (2-13) to a non-dimensional form. In 

order to do this, the following transformation relations are defined: 
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Multiplying both sides of equation (2-11) by qggvg  , we have: 
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from which we obtain, 
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 - (using the definitions in (2-14a) and (2-14b))        

(2-15) 

 

 

 

Next, multiplying both sides of (2-12) by  
qggvg  , we have: 

 
      
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
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
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


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




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



 
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
























 

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
























 


















  2
,,,

,

















E
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N
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q

ggtr
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q
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g

q

g

q
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q

g

q

ggg

q

gg

 

which, after some manipulation, can be expressed in the form: 

 
      2

,,,
,





Annj

n
ggg

g





 

(2-16) 

Similarly, equation (2-13) can be manipulated into the analogous form: 

 
      2

,,,
,





Asnnj

n
qqq

q





 

(2-17) 

Also, the passive sections have no gain or absorber medium, so that the evolution of the 

optical field in these sections may be expressed as: 
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 
0

,








A
 

(2-18) 

From (2-18) and the ring cavity schematic in Figure 2-3, we find that: 

   12 ,,  AA  , and, 

   45 ,,  AA    

where, again,   vz qkk   . 

(2-19) 

Next, the evolution of the optical field in the gain and absorber sections may be obtained 

by integrating equation (2-15) section-wise as follows: 

 Gain section  43   : 

 
   






,,

2

1,
An

iA
g

g










 





 

Rearranging and integrating the resulting expression over the limits of , we get: 



A ,4  e
1

2
1ig G  

A ,3  

(2-20) 

Next, equation (2-16) needs to be integrated over  to find the evolution equations of the 

saturable gain: 

        

















 dAndndjdn gggg

2
,,,,

4

3

4

3

4

3

4

3

   

        





 dAnGgG g

2

0 ,,
4

3

  

(2-21) 
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 Absorber section  32   : 

 
   






,,

2

1,
An

iA
q

q










 





 

 

 
   

 2

1
2

1

3 ,, 


AeA
Qi q

  

(2-22) 

Again, integrating equation (2-17) over  to find the time evolution equation for the 

saturable absorption, we get: 

        

















 dAndndjdn qqqq

2
,,,,

3

2

3

2

3

2

3

2

   

        





 dAnsQqQ q

2

0 ,,
3

2

  

 (2-23) 

The integrals on the RHS of equations (2-21) and (2-23) may be evaluated to yield: 

       
2

3

2

40 ,,  AAGgG   

 (2-24) 

       
2

2

2

30 ,,  AsAsQqQ   

 (2-25) 

Now, equation (2-9) for the spectral filtering element may be expressed in time as: 

      


dAfTA 51 ,, 


  

 (2-26) 
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where,  vLT q  is the normalized cold cavity round trip time. 

Substituting equations (2-20) and (2-22) into (2-26) and re-expressing the field 

transformation condition in the form     ,, TATA  , we have: 

        


dARfTA 


  

 (2-27) 

with, 



R    e

1ig 
G  
2












 1iq 

Q  
2



























. 

(2-28) 

Using a Lorentzian line shape function for the spectral filtering element, 



f   exp   i   

 (2-29) 

Substituting (2-28) and (2-29) into (2-27), we get: 



A  T   exp   i    




  exp
1

2
1 ig G   1 iq Q   









A  d

 

 (2-30) 

Finally, differentiating equation (2-30) w.r.t dimensionless time  , the two – dimensional 

(spatio – temporal) system of PDEs is simplified to a one – dimensional (temporal) 

system of DDEs [13, 14]: 

         

   


 

ATAe
d

dA TQiTGi qg

 







 1
2

1
1

2

1

 

(2-31) 
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 
         2

0 1 


  AeeGg
d

dG GQ  
 

(2-32) 

 
       2

0 1 


  AesQq
d

dQ Q  

(2-33) 

In the following section, a novel and powerful formalism to transform the system of 

equations derived above in [13] and make them device-specific for a given two-

section passively mode-locked quantum dot laser with parameters measured on the 

device, is presented. 

The next two chapters then proceed to show instances of how this novel formalism 

 an d a a   a     n an         d  ’  ana     a  and    d        a a        ,      d n  

a simple and elegant, yet remarkably powerful tool to model real devices that 

circumvents many of the issues inherent to more sophisticated models, outlined 

earlier in this chapter. 

 

2.3 A Novel Formalism for a DDE Model Seeded with Device-Specific 

Measurables [18] 

A recent experiment performed by our group [19] made use of the Segmented Contact 

Method [20, 21] to obtain modal gain and total loss spectra as a function of current 

density, over absorber bias voltage and temperature for the QD material comprising the 

device. These curves were used to extract the modal gain  modg  and unsaturated 

absorption  0a  as a function of current density at each bias condition. 

Now, from equation (2) in [19], we have the following threshold condition for lasing: 
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      gamaigi LLLaLJg   0mod          

 (2-34) 

where, m and i  represent, respectively, mirror losses and internal losses, and gL and aL  

represent, respectively, the gain and absorber section lengths, with: 

 

                           























21

1
ln

1

RRL
m                             

 (2-35) 

where,   LLL ag  and 1R , 2R denote mirror reflectivities. 

Substituting (2-35) into (2-34), we get: 

 

      210mod ln
2

1
RRLaLJg aigi 








          

(2-36) 

 

In the DDE model, G and Q describe the saturable gain and loss introduced by the gain 

and absorber sections, respectively, and 1 describes the total roundtrip non-resonant 

linear intensity losses. Thus, the threshold condition for lasing is given by: 

 

  1QGe  

(2-37) 

 

From (2-36) and (2-37), we find: 
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   gi LJgG  mod    

(2-38) 

  ai LaQ  0  

(2-39) 

21RR  

(2-40) 

 

Next, we derive expressions relating the saturable gain and loss ( G andQ , 

respectively) to the unsaturated gain and absorption parameters ( 0g and 0q , 

respectively). 

From the definitions given in [13], we have ( and  represent, respectively, spatial 

and temporal coordinates in the frame of reference of the pulse): 

       








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q
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g 
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  ,,
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3

4

3

   

(2-41) 

  










dNJ
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djg tr

ggg

q

gg

g 


 
4

3

4

3
20  

(2-42) 

substituting for ggg NJ  , we obtain: 

   





dNN

vg
g tr

gggg

q

gg



  ,

4

3
20  
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   
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4
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(2-43) 

where,  
gq  .  

Comparing (2-41) and (2-43), we get: 

Gg 0  

(2-44) 

Similarly, 

       



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substituting for qqq JN  , we obtain: 
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          





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s tr

q

q

gg





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(2-45) 

where,   
    

  JJg
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g
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gg

qq
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
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(2-46) 

Also,  












dN

vg
djq tr

q

q

gg

q 



3

2

3

2
0                     

(2-47) 

Comparing (2-45) and (2-47), we get  

 sQq 0  

(2-48) 

Finally, we constrain the regime of operation to stable, fundamental mode-locking using 

a dynamical stability analysis similar to that presented in Fig. 5 of [13].   

A suitable constraint to achieve stable, fundamental mode-locking in terms of 0g and 0q , 

is given by the locus of points lying on the line 

00 mgq   

(2-49) 

 where m  represents the slope of a line in the 0g - 0q plane, chosen to lie entirely within 

the region corresponding to the fundamental mode-locking regime.  
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Thus, we have, m
G

sQ
m

g

q





















0

0 . Therefore using equations (2-38), (2-39) and 

(2-40): 

              
 
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
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
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mod

0
              

(2-50) 

Equations (2-38) – (2-40), (2-44), (2-46), (2-48) and (2-50) together provide a set of 

transformation relations that can be used to seed the DDE model given above in 

equations (2-31) – (2-33) with parameters extracted from values measured on the device 

under study.  

 

2.4 Chapter Summary 

 

In this chapter, a Delay Differential Equation (DDE) model for passive mode-locking in 

two section semiconductor lasers was introduced as a powerful and versatile, yet 

computationally less demanding alternative to conventional Traveling Wave models.  

The following were the key simplifying assumptions made: 

i. The linear cavity was modeled as a ring cavity with unidirectional wave 

propagation. This allowed for a sequential, lumped-element treatment of the light-

matter interaction in each section, thereby simplifying the mathematical 

complications associated with simultaneous, distributed interactions in all 

sections. 
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ii. The barrier-well-dot formalism of the model, which necessitated a comprehensive 

consideration of dot-to-dot, dot-to-well and other transitions was replaced with a 

simple rate equation formalism involving a linear dependence on macroscopic 

carrier concentrations in the gain and the absorber sections. This led to a dramatic 

simplification in the number of equations and the associated parameter space of 

the model. 

iii. Only ground state lasing was considered. 

As a result of the simplifying assumptions in i. – iii. above, the original DDE model 

developed in [13] comprises a set of three coupled differential equations in the time 

domain, where the evolution of the intracavity field is described by a delay equation. Not 

only does this lead to a considerable reduction in the number of model equations, but the 

simplification of the spatio-temporal evolution of the field to pure temporal evolution 

enables a substantial reduction of computational cost. In addition, the parameter space of 

the model is now reduced to a mere 9 parameters. 

New equations were then derived in order to provide a generalized framework for the 

transformation of experimentally measured quantities – specifically, gain and absorption 

measurements on the device under study using the Segmented Contact method [20, 21] – 

into dimensionless model parameters to seed the DDE model. This novel scheme greatly 

enhances the practical utility of the model as an elegant and powerful theoretical guide to 

next generation device design and analysis. 

As will be seen in the next two chapters, aside from dramatically reducing the parameter 

space of the  original DDE model (comprising a total of 9 parameters) to an absolute 

minimum of free parameters by a systematic process of constraining to values extracted 
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from measured quantities, many of the properties unique to QD systems are found to be 

actually embedded in the measurement-extracted model parameters, so that the model, 

with the inclusion of the newly-derived equations, provides invaluable insight into trends 

specific to an individual device by virtue of the fact that the parameters seeding the 

model were measured on the device. 

In chapter 3, the analytical capabilities of the extended model are explored for a specific 

device. The first part of the chapter is devoted to an illustration of the process of 

transforming actual measurements into model parameters over a range of operating 

conditions along with an analysis of basic trends, while the remainder of the chapter 

presents specific instances of how the model can offer invaluable insight into 

experimentally-observed phenomena, particularly in the sudden and often unprecedented 

fluctuations of device output. Chapter 4 then explores some of the powerful capabilities 

of the extended model as a predictive guideline to device design/operation.  
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Chapter 3  

Analytical Capabilities of the DDE Model  

 

In this chapter, we use the novel formalism developed in Chapter 2 to transform 

experimental data measured on an actual device into dimensionless model parameters. 

The data was acquired over a range of different operating conditions, so that the accuracy 

of the model is validated over a range of operating conditions. 

After a brief description of the layer structure and geometry of the device and a review of 

the new transformation relations derived in Chapter 2 in section 3.1, section 3.2 discusses 

a novel approach toward determining the carrier relaxation ratio of a device from gain 

and loss measurements, specific to its operating conditions. Not only is the method a 

potentially viable alternative to conventional pump-probe techniques, but the value 

extracted using this approach yields the carrier relaxation ratio for the entire device, as 

opposed to the pump-probe method, where the approach is to perform measurements 

individually on the gain and absorber sections.   

Section 3.3 demonstrates the use of the model as an analytical tool with measurement-

extracted parameters. After a basic demonstration of pulse-trimming with parameters 

corresponding to increasing absorber bias voltage in subsection 3.3.1, subsections 3.3.2 

and 3.3.3 are devoted to parameter sensitivity-analysis studies devoted, respectively, to 

the linewidth enhancement parameter and to the unsaturated gain and absorption 

parameters. 

Finally, section 3.4 explores the analytical capabilities of the model in relation to output 

pulse dynamics. The results of simulation are shown to provide invaluable insight into 
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experimental observations acquired using standard pulse characterization techniques such 

as Frequency Resolved Optical Gating (FROG) and Autocorrelation.  

Conclusions are given in section 3.5. 

 

3.1 Description of Simulated Device 

 

The device studied in this work is an 8-stack, dots-in-a-well (DWELL) laser structure 

grown by elemental source molecular beam epitaxy (MBE), with a 7-mm gain section 

and a 1-mm absorber section generating a 4.96 GHz pulse repetition rate under 

fundamental mode-locking. A schematic of the device with important details of the 

epitaxial layer structure is shown below in Fig. 3-1.  

 

 

 

Figure 3-1: Device schematic including details of epitaxial structure. 

 

(7 mm) 

(1 mm) 
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From Chapter 2, we recall the following set of transformation relations [1] that can be 

used to seed the DDE model given in equations (2-31) – (2-33) with parameters extracted 

from values measured on the device under study: 
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(2-38)  

  ai LaQ  0  

(2-39) 

21RR  

(2-40) 

Gg 0
 

(2-44) 

    

  JJg

JJg

g

g
s

Jg

gg

qq













mod

0mod
mo d  

(2-46) 

 sQq 0  

(2-48) 

 
   sLJgm

La

smG

Q

gi

ai



















mod

0
              

(2-50) 

The parameters appearing on the right-hand side of equations (2-38)-(2-40), (2-44), (2-

46), (2-48) and (2-50) can be readily measured as a function of gain-section current 
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density, wavelength, absorber reverse bias and temperature using the segmented contact 

method [2, 3].  

 

3.2 Novel Approach to Estimate the Carrier Relaxation Ratio of the QDMLL [4] 

 

One of the novel findings of this dissertation lies in the newly derived expression (2-50) 

[4]. The parameter   is known as the Carrier Relaxation Ratio of a QDMLL, and is 

defined as the ratio of the absorber recovery time  abs  to the gain recovery time  
gain , 

as might be recalled from Chapter 2. Because of the fact that the interplay between gain 

and absorber dynamics is critical to the mode-locking process, this parameter is critically 

important to pulse quality in the mode-locking process. 

The standard technique to determine this parameter involves measuring gain and absorber 

recovery times using pump–probe techniques, individually for the semiconductor optical 

amplifier [5] corresponding to the gain section, and for the saturable absorber [6, 7] 

corresponding to the absorber section of the two-section laser. The approach discussed in 

this work provides an analytical expression for the carrier relaxation ratio as a function of 

static parameters that can be easily measured on a multi-section QD laser test structure 

over temperature, current density, bias voltage and wavelength. This allows mapping-out 

the carrier relaxation ratio of the QDMLL over a range of operating conditions, each of 

which can be used as an input parameter in the DDE model in order to simulate device 

performance at that condition, while circumventing the need to perform pump-probe 

measurements. 
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The model parameter values used in determining   are summarized in Table 3-1 (-3V 

absorber bias and device temperatures of 20 
o
C, 30 

o
C, 40 

o
C, 50 

o
C & 60 

o
C), and 

represent values at the onset of mode-locking, i.e., the point at which a pulse was 

observed on an autocorrelator [8]. The data from which model parameters were extracted 

was measured on Zia Laser Wafer 967. 

 

Table 3-1: Measured/extracted temperature-dependent parameter values (dimensionless) at the 

onset of mode-locking for a -3V absorber bias (Wafer ZLG967). 

T(°C) G Q G-Q Q/G s   

20 4.22 3.20 1.02 0.76 4.65 0.08 

30 4.18 3.33 0.85 0.79 5.89 0.07 

40 3.95 3.43 0.52 0.87 8.47 0.05 

50 3.33 3.03 0.30 0.91 10.68 0.04 

60 2.89 2.43 0.46 0.84 12.20 0.03 

 

This data is plotted in Fig. 3-2 (solid squares), along with the values of absorption 

recovery times reported in [7] (solid circles) as a function of temperature. The similarity 

of the two plots suggests that the trend exhibited by equation (2-50) for    over 

temperature follows the trend exhibited by the absorption recovery time a .  
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Figure 3-2: Comparative plots of experimentally measured a  (solid circles) [7] and extracted 

relaxation ratio (solid squares) v/s temperature. 

 

As a comparison, the pump-probe characterization of the absorber recovery times 

reported in [7] measured a decrease in the absorption recovery time with increasing 

temperature for a constant reverse bias of 2 V (the device studied in that work comprised 

a 190 nm active region, which corresponds to an electric field of 105 kV/cm). For a 

similar temperature range, with a 3V reverse bias (288 nm active region, yielding an 

electric-field of 104 kV/cm) and a similar QD epitaxial-structure, we extract a 

comparable decrease in   as seen from Fig. 3-2. While it is known that both gain and 
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absorption recovery times decrease with temperature ([7], [9]), the similarity in the trends 

discussed above, together with the decreasing value of  in Table 3-1 is strongly 

suggestive that a  is the dominant factor in determining the behavior of  . Thus, it may 

be inferred that a decreasing value of   with increasing temperature suggests that the 

absorber recovery time decreases by a significantly larger factor than the corresponding 

reduction in the gain recovery time.  

Table 3-2 shows the variation of the extracted relaxation ratio using parameters from 

Wafer ZLG967 at a fixed temperature of 20 
o
C, for absorber bias voltages of 0V, -3V and 

-5V, wherein, a trend similar to that seen with increasing temperature is observed for  . 

 

Table 3-2: Measured/extracted absorber bias voltage-dependent parameter values 

(dimensionless) at the onset of mode-locking at 20 
o
C (Wafer ZLG967) 

V G Q G-Q Q/G s   

0 3.36 2.33 1.03 0.69 2.70 0.13 

-3 4.22 3.20 1.02 0.76 4.65 0.08 

-5 4.6 3.62 0.98 0.79 7.40 0.05 

 

Again, the carrier relaxation ratio shows a decrease with increasing reverse bias.  This 

trend agrees with the results obtained in [6] using pump-probe techniques, and supports 

the experimentally observed phenomenon that stronger bias voltages produce narrower 

pulses, given that pulse trimming is achieved primarily with faster absorption recovery 

rates, which shortens the net gain window during which pulses are generated. 

In view of the discussion above, it can be seen that the trends exhibited by the carrier 
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relaxation ratio extracted from gain – loss data acquired by the segmented contact 

method using the expression derived in equation (2-50) closely mirrors the trends that can 

be expected by individually measuring g  and a  using pump-probe techniques, for a 

range of operating temperatures and bias voltages. Thus, it is reasonable to expect that 

this method of extracting  from gain and loss data provides a viable alternative to pump-

probe measurements. 

 

3.3 Transformation of Measured Values to Model Parameters [1] 

 

The expressions (2-38) – (2-40), (2-44), (2-46), (2-48) and (2-50) derived in Chapter 2, 

particularly for the carrier relaxation ratio , provide an elegant and convenient technique 

to accurately determine device-specific dimensionless parameters for input into the DDE 

model. Such a situation may be envisioned for a case where device performance needs to 

be simulated over a range of operating conditions.  

A close examination of the system of DDEs given in equations (2-31) – (2-33) reveals the 

parameter space involved. Thus, in order to model a QDMLL realistically, it is 

imperative to constrain as many of the parameters as possible to values obtained from 

measurements on an actual QD device. The simulation results, obtained by seeding the 

model with these parameters (transformed to dimensionless form, using the relations 

derived in Chapter 2), can then be used to interpret and characterize the mode-locking 

performance of the same device.  

Since the onset of mode-locking occurs at or beyond threshold, threshold values provide 

a convenient set of initial conditions for equations (2-31) – (2-33). The first step, then, is 
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to use values measured at threshold in equations (2-38) and (2-39) to calculate  0G  

and  0Q , and then use the values of  0G  and  0Q  in equations (2-44) and (2-48) to 

calculate the corresponding unsaturated parameters, 
0g  and 0q , at threshold. Further, 

parameters   and s  can be directly found from equations (2-40) and (2-46), 

respectively, while the carrier relaxation ratio ( ) is extracted from equation (2-50). 

Next, the absorber relaxation time is used to infer the delay parameter  T  and the 

spectral filtering coefficient ( ) for each operating condition as follows. The delay 

parameter  T  is calculated for each case by simply scaling the cavity round trip time to 

the absorber relaxation time for that case. In all cases, the absorber relaxation time was 

estimated from the experimental results in [6] and [7] for a saturable absorber with an 

epitaxial layer structure similar to the device simulated in this work, following from the 

discussion in the previous section. For instance, at an operating temperature of 20 
o
C, the 

bias voltage applied on the absorber section was expressed as an electric field strength 

across the active region. This value was then converted back to a bias voltage for the 

saturable absorber structure studied in [6], and the corresponding value of absorber 

relaxation time was found from Fig. 2b of [6]. For higher temperatures, the exponential 

expression for thermionic emission given in equation (2) of [7] was used to estimate the 

same. Also, the spectral filtering coefficient (  ) was estimated from the measured optical 

spectrum of the device as the product of the number of cavity modes taking part in the 

mode-locking process and the cavity inter-mode frequency spacing  1T . Finally, the 

linewidth enhancement parameters in the gain and absorber sections were chosen such 

that the steady state pulse width obtained from simulation was consistent with the typical 

pulse width measured on an autocorrelator for the actual device.    
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Now, having reduced the number of free parameters to two (namely, the linewidth 

enhancement factors in the gain and absorber sections), we set the two to be equal in 

order to simplify the analysis. Previous work [10, 11] has shown that this case 

corresponds to the most stable operating point, according to the DDE model. While this 

assumption could result in some departure from the actual values that the linewidth 

enhancement factors in the gain and absorber sections might take, the primary objective 

here is to study the broad trends, and how they might affect device performance. Further, 

it is reasonable to expect that any such departure may be marginal close to threshold, 

considering that the device under study in this work has a significantly longer gain 

section, so that the device behavior can be expected to be dominated by the gain section 

component. This value is then fit to the deconvolved autocorrelator pulse width 

measurement.   

The results shown in the following were obtained as follows. The parameter values 

measured/extracted as discussed above were used as initial conditions for the simulations. 

The system of equations defining the model (equations (2-31), (2-32) and (2-33)) was 

then integrated over two thousand round trip times to allow transients to settle. 

Table 3-3 lists a set of sample parameter values used to seed the simulations with 

parameters measured/extracted at saturable absorber bias conditions of 0V, -3V and -5V, 

at a temperature of 20
 o

C. As mentioned at the beginning of this section, the parameter 

values were obtained from the experimental data presented in [8], and made 

dimensionless for input into the model. 
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Table 3-3: Simulation parameters over bias voltage at 20 
o
C (Wafer ZLG967)  

Parameter 0 V -3 V  -5V 

T 3.23 5.00 6.67 

G(0) 3.33 4.18 4.18 

Q(0) 2.33 3.20 4.55 

g  0.1 0.2 0.5 

q  0.1 0.2 0.5 

s 2.68 4.65 6.90 

  0.13 0.08 0.08 

  29.14 39.15 41.10 

  0.55 0.55 0.55 

 

The parameter values presented in Table 3-3 correspond to threshold conditions, i.e., 

current density values of 357 A/cm
2
 at 0V, 462 A/cm

2
 at -3V and 537 A/cm

2
 at -5V (ref: 

Tables I and II of [8]). It may be noted that while the table lists a particular sample pair of 

values for g and q for each absorber bias voltage, these were typically chosen in each 

case to simulate the experimentally-observed pulse structure or duration. As a first step, it 

is fairly straightforward to check if the extended formalism of the DDE model, using 

model parameters extracted from measured data, can capture well-known trends in 

QDMLLs, such as the effect of an increased absorber bias in trimming the pulses.   
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3.3.1 Pulse-Trimming with Stronger Absorber Bias Voltage [12] 

Fig. 3-3a shows the steady state output of the system of equations in (2-31) – (2-33), for 

the case g = q = 2.5. The delay parameter T has been scaled using a characteristic 

timescale of 62 ps, which was inferred from measurements performed on a QD saturable 

absorber with a similar epitaxial structure
 
[6], using an equivalent value of active region 

field strength. 

In the absence of an applied bias on the absorber section, there is no sweep-out 

mechanism as a result of the associated electric field to expedite the carrier relaxation rate 

in the absorber section. Thus, the absorber takes a longer time to recover, resulting in 

sub-optimal pulse trimming. Thus, the simulation results predict broad pulses, with a 

width ~ 23 ps (Fig. 3-3b).  

 

 

a.) 
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b.) 

Figure 3-3a.): Steady state simulation result for 0 V absorber bias, 5.2 qg  : G(τ), Q(τ), 

(G(τ)-Q(τ)) and |A(τ)|
2
 b.) Steady state pulse intensity profile for 0 V absorber bias, 

5.2 qg  . 

Next, the effect of an applied (moderate) bias voltage is considered, with Vabs = -3V.  

Again, in this case, all other parameters are constrained to extracted values, and the effect 

of the linewidth enhancement factor is analyzed by simulation. The second column of 

Table 3-3  lists a sample set of parameter values, extracted from gain and loss spectra at 

20 C and an applied absorber bias of -3V at threshold (current density = 462 A/cm
2
). 

Again, using the measurements reported in [6], the delay parameter T was scaled to a 

characteristic timescale of 40 ps. Fig. 3-4a.) shows the simulation output for the case 

g = q = 1.8. Compared to the previous case with no applied bias, the net gain profile in 

the third panel shows a sharper profile, suggesting a shorter interval of high net gain – 

this is seen as considerably better trimmed pulses in the fourth panel, with a pulse width 

~ 10 ps (Fig. 3-4b.)). 
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Figure 3-4a.): Steady state output for -3 V absorber bias, 8.1 qg  : G(τ), Q(τ), (G(τ)-Q(τ)) 

and |A(τ)|
2
. 

 

Figure 3-4b.): Steady state pulse intensity profile for -3 V absorber bias, 8.1 qg  . 

 

Finally, we consider the effect of a strong applied bias of -5 V on the absorber section. 

The third column of Table 3-3 lists a sample set of parameter values, extracted from gain 

and loss spectra at 20 C and an applied absorber bias of -5V at threshold (current density 

= 537 A/cm
2
). Again, using the measurements reported in [6], the delay parameter T was 

scaled to the characteristic timescale, chosen to correspond to an absorber recovery time 
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of 30 ps. Fig. 3-5a.) shows the simulation output for the case g = q = 0.8. 

 

Figure 3-5a.): Steady state output for -5 V absorber bias, 8.0 qg  : G(τ), Q(τ), (G(τ)-

Q(τ)) and |A(τ)|
2
. 

In this case, we find, comparing the first and second panels in Fig. 3-5a.) to the 

corresponding panels in Fig. 3-4a.), that while the saturable gain profile in both cases 

follows a similar trend, the saturable loss saturates at a lower value for a higher bias. The 

lower losses lead to a slightly higher net gain window than the -3 V case, so that pulses 

are trimmed to ~ 8.75 ps (Fig. 3-5b.)). 

 

Figure 3-5b.): Steady state pulse intensity profile for -5 V absorber bias, 8.0 qg  . 
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The set of trends discussed in this subsection have also been simulated with parameters 

extracted on other two-section QDMLLs. On the one hand, this can be used to get a sense 

of the set of parameter values under which a given device will generate a certain output. 

In a broader context, however, it is essential to recognize the power of being able to 

constrain most of a small parameter space to values measured on a device, operated under 

a certain set of conditions. First, this provides a natural scheme for a sensitivity analysis 

on a given parameter that can be varied over a range, while all other parameters are held 

fixed. Such an analysis can then be used to infer parameter ranges over which device 

operation can be expected to be stable. In the remainder of this chapter, the analytical 

capabilities of the model are demonstrated, first in the context of parameter sensitivity-

analysis, and later, to study sudden dynamical transitions in pulse shape. 

 

3.3.2 Impact of the Linewidth Enhancement Factor (  – parameter) 

One of the important analytical capabilities of our extended model is the ability to gain 

insight into the range of values of the linewidth enhancement factor for stable, 

fundamental mode-locking to be likely. It is seen that the linewidth enhancement factors 

in the gain and absorber sections have a profound influence on pulse structure, so that 

past a certain value of the linewidth enhancement factor, instabilities emerge in the 

structure. Typical examples of instabilities of this type include pulse splitting and satellite 

pulses, detailed analyses of which will be performed in Chapter 4.  

Consequently, sudden changes in pulse structure were used to determine mathematical 

ranges for the linewidth enhancement factor for stable, fundamental mode-locking to be 

likely. Table 3-4 summarizes the mathematically likely ranges for g  and q  discussed 
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above, and the values used in each case to obtain a pulse width closest to what was 

obtained experimentally from autocorrelator (AC) measurements. 

Table 3-4:  Likely  - parameter ranges for stable, fundamental ML over bias voltage at 20 °C 

(Wafer ZLG 967). 

 

For instance, for the 5V reverse bias case, the mathematically permissible range of g  

and q  extends to 1.1, past which the structure of individual pulses exhibits instabilities 

such as splitting, as shown in Fig. 3-6 for qg, = 1.2 (black pulse train), in sharp contrast 

to the stable pulses obtained with qg, = 0.5 (green pulse train). 

Vabs Range of    g  = q    

0 0 < g  = q < 2.6 0.1 

-3 0 < g  = q < 2.1 0.2 

-5 0 < g  = q < 1.2 0.5 
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Figure 3-6: Simulation results at 20 C and 5V absorber reverse bias. Green pulse train is for 

qg, = 0.5 and the black pulse train is for 
qg, = 1.2, refer to Table 3-4. 

As presented in Table 3-4, the general trend with increasing reverse bias is to reduce the 

range of acceptable linewidth enhancement factors for stable locking, although the device 

itself operates at a larger value with increasing reverse bias because of the consequent 

increase in threshold.  Although a larger linewidth enhancement factor results in pulse 

broadening due to self-phase modulation, the improved pulse trimming at higher reverse 

bias in the absorber can help counteract this effect.  The physics of these processes are all 

accounted for in the model. 
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3.3.3. DDE Simulations as an indicator of lower unsaturated gain and absorption 

in QD devices 

Since the unsaturated gain and loss parameters are expected to be lower for QD structures 

in comparison to QW structures, the effect of varying this pair of parameters was 

important to this study.  

For an operating temperature of 20 
o
C and no applied reverse bias, the values of 

0g  and 

0q  can be extracted from the parameter values listed in the first column of Table 3-3 

using equations (2-44) and (2-48). Next, keeping all other parameters unchanged from 

Table 3-3, 
0g  and 0q  are each scaled-up by a factor of 10. As seen clearly from Fig. 3-

7a.), this leads to significant instabilities in the steady-state output.  

 

Figure 3-7a.): Simulation results at 20 C, 0V absorber bias obtained with 
0g  and 0q  increased 

10-fold (all other parameters as in Table 3-3) show fluctuating intensities. 
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Moreover, under the influence of an applied reverse bias on the absorber section or an 

elevated temperature, the simulation results are stable for an even smaller range of 

unsaturated gain and absorption. For instance, for the cases T = 20
 o

C, -3 V bias (Fig. 3-

7b.)) and T = 60
 o

C, 0 V bias (Fig. 3-7c.)), keeping all other parameter values unchanged, 

0g  and 0q  were each scaled-up by a factor of 5, whereby, the output is seen to have 

switched to higher-order mode-locking. 

 

Figure 3-7b.): Simulation results at 20 C, -3V absorber bias obtained with 
0g  and 0q  increased 

5-fold (all other parameters as in Table 3-3) show a transition to higher-order mode-locking. 
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Figure 3-7c.): Simulation results at 60 C, 0V absorber bias obtained with 
0g  and 0q  increased 

5-fold show a transition to higher-order mode-locking. 

This suggests that even a five-fold increase in the values of 
0g  and 0q  (which represents 

values typical of QW devices), is impractical for stable, fundamental mode-locking for 

the QD device under study. This is strongly suggestive that in order for QD systems to 

achieve stable pulsation at elevated temperatures or under reverse bias, the values of 

unsaturated gain and absorption must be on the order of the values extracted in Table 3-3. 

Higher values tend to push the system out of the stable, fundamental mode-locking 

regime. In other words, the simulations show that lower values of unsaturated gain and 

absorption in the QD device under study compared to a QW version are necessary to 

achieve stable, fundamental mode-locking. These simulation results broadly support the 

extensive experimental findings in [13]-[16], especially at higher temperatures. 
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3.4 Pulse Shape Analysis with the DDE Model 

 

3.4.1 Shortcomings of Autocorrelator Data 

 

Table 3-5 gives a comparison between typical pulse widths obtained experimentally from 

autocorrelator measurements (assuming a sech
2
-intensity profile [17]), and the 

corresponding values obtained by simulation using the DDE model. Comparing the last 

two columns shows very good agreement between the two. 

Table 3-5: A comparison of pulse widths obtained experimentally and from simulation results 

over bias voltage at 20 
o
C 

Absorber 

BiasVoltage 

(V) 

Measured 

Autocorrelator Pulse 

Width (ps) 

Deconvolved 

Pulse Width 
 

(ps) 

DDE Model Simulated 

Pulse Width (ps) 

0 25 16 16.25 

-3 8 5.12 5 

-5 5 3.2 3.75 

 

However, as seen from the pulse profiles in Fig. 3-8 a.), b.) and c.), autocorrelation 

measurements yield just a single pulse. But a look at pulse trains over extended periods of 

time (obtained by simulation) reveals a rather startling possibility. 
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a.) 

 

b.) 
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c.) 

Figure 3-8: Autocorrelator pulse measurements a       , a.) 0V bias (inset shows DDE 

simulations predict stable, fundamental mode locking for this case) b.) -3V bias (inset shows 

DDE simulations predict fundamental mode-locking on the verge of instability for this case), and 

c.) -5V bias (inset shows DDE simulations predict highly unstable mode-locking for this case). 

 

As seen from the simulation results in the insets in Fig. 3-8 a.), b.) and c.), fundamental 

mode-locking is predicted to be very stable for a 0V absorber bias, on the verge of 

instability for a -3V absorber bias, and highly unstable for a -5V absorber bias, 

suggesting the possibility that the device may be Q-switched/pulsing in the last case, but 

not stably mode-locked. This information is obscured by autocorrelation measurements, 

where the formation of a single pulse with a reasonable pulse width may be taken as 

evidence of stable mode-locking. Thus, to address subtleties in the DDE model regarding 

pulse shape, and not just width, a more complete characterization of the pulse is required. 
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In the next section, FROG is used to measure the evolution of the pulse shape with 

increasing absorber bias and compared to the DDE model. 

3.4.2. Correlation with Frequency Resolved Optical Gating (FROG) Measurements 

The schematic diagram of the collinear second harmonic generation (SHG) FROG 

system is shown in Fig. 3-9 [18, 19]. The optical output of the laser is collected with an 

optical head, which integrates a lens, an isolator and a short 1-m single-mode 

polarization-maintaining (PM) fiber pigtail, and then is coupled into the FROG system 

through a PM fiber. The pulse train is sent into a free-space Michelson interferometer 

(MI) to produce pulse pairs with variable delay that are coupled into an aperiodically 

poled lithium niobate (A-PPLN) waveguide with a 6-cm long poling region to produce a 

SHG signal. The variable delay was produced by a voice coil-actuated servo having a 

delay resolution of 3.5 fs.  The servo can be controlled either digitally via computer or by 

an analog waveform.  The two delay pulses were sent collinearly into an A-PPLN 

waveguide. 

The A-PPLN chip improves SHG conversion efficiency of the mode-locked diode lasers 

to a level that allows real-time data acquisition.  By comparing the original QDMLL 

wavelength spectrum with the value computed from the FROG measurement, the 

bandwidth of the A-PPLN is verified to be sufficiently wide.  At each relative time delay 

between the two pulse replicas, the SHG spectrum is recorded using an Ocean Optics 

QE65000 spectrometer. Because of the collinear geometry, interference fringes are 

produced.  By applying an AC modulation to the servo position, the delay is modulated, 

and the fringes are averaged out if a sufficiently long integration time is used. The DC 

background from the low pass filtered FROG trace is removed using background 
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subtraction [20, 21]. The data acquisition, preprocessing and processing were done using 

commercial FROG software that was developed by Mesa Photonics. 

 

 

Figure 3-9: Experimental setup of the collinear SHG FROG system. 

 

FROG measurements on the device under study in this work revealed a curious trend. As 

seen from Fig. 3-10 a.), a bias condition of a 95 mA gain current and a -3 V bias on the 

absorber section yielded a temporal pulse shape which is typical for such devices, with a 

steep rising edge, and a slower falling edge. 
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Figure 3-10: Experimentally measured FROG traces showing the normalized temporal pulse 

intensity (clockwise from top left): a.) 95 mA gain current, -3V absorber bias b.) 95 mA gain 

current, -5V absorber bias c.) 100 mA gain current, -3V absorber bias, and d.) 100 mA gain 

current, -5V absorber bias. 

 

However, keeping the gain current fixed, when the absorber bias was increased to -5V, 

the asymmetry of the pulse was observed to flip as seen in Fig. 3-10 b.) Specifically, the 

trailing edge of the pulse is seen to show a faster decay than the rise time of the leading 

edge. An identical trend was seen at higher currents, such as the case shown in Figs. 3-10 

a.) b.) 

c.) d.) 
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c.) and d.), where the pulse asymmetry reversal in going from an absorber bias of -3 V to 

-5 V was observed for a gain current of 100 mA. 

Simulation results of the DDE model seeded with physically measured parameters 

provide an invaluable tool to help understand this trend. Fig. 3-11 shows simulation 

results for the -5 V absorber bias condition near threshold at 20
 o

C, with g = q = 1.1 

(solid green plots), and g = q = 1.6 (dashed red plots). The switching of pulse 

asymmetry can be clearly seen in Fig. 3-11 a.), from the green, solid pulse, to the red, 

dashed pulse. 

The reversal in asymmetry may be interpreted as follows. At higher bias voltage, the gain 

section requires a higher threshold current, so that the higher concentration of injected 

carriers induces an increase in the linewidth enhancement factor. Combined with the 

length of the gain section, this results in significant pulse broadening due to dispersion 

and self-phase modulation as the pulse propagates through the gain section. 

Simultaneously, the applied bias on the absorber section has the effect of expediting the 

sweep-out rate of the photo-generated carriers, leading to a faster recovery time. 

A careful comparison of the plots in Fig. 3-11 b.) and c.) reveals the subtle distinguishing 

features between the two cases. 
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Figure 3-11: Simulation results for the T = 20
 o
C, Vabs = -5 V qg,  = 1.1 (solid green curves) , 

qg,  = 1.6 (dashed red curves). (a) Temporal pulse profiles (inset shows corresponding net gain 

profiles), (b) shows the saturable loss profiles and (c) shows the saturable gain profiles, 

superimposed on the temporal pulse profiles. 
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In the first case ( g = q    . ,     d     n      ),             ,    a          a  n , “     

   ad n d”  n      a n       n,    n              -phase modulation due to the relatively 

lower linewidth enhancement factor. Thus, the pulses exiting the gain section are 

expected to be narrower in the former case. The steeper leading (rising) edge associated 

with a narrower pulse causes the absorber to saturate rapidly, as seen from the green 

curves in Fig. 3-11 b.).  

By contrast, in the second case ( g = q    . , da   d   d      ), a “        ad n d” 

pulse exiting the gain section with a less steep leading edge profile is not able to saturate 

the absorber quite as fast, so that the absorber saturation is noticeably more gradual than 

in the former case, as seen from the dashed red curves in Fig. 3-11 b.).  

The trailing (falling) edge profile is governed by the absorber dynamics. On inspection of 

the saturable loss profiles shown in Fig. 3-11 b.), one can observe that the absorber 

recovery is slightly more rapid for the dashed red plot ( g = q = 1.6). Thus, due to the 

 a     a        a   n   d    x     n              a       a  ,       “             d”,      a  

the pulse has a steeper trailing (falling) edge.  The combined effect of the gain and 

absorber sections is that in the former case ( g = q = 1.1), the leading edge of the pulse 

is steeper, while the trailing edge shows a relatively gradual decay, whereas in the latter 

case ( g = q = 1.6), the leading edge is less steep, the trailing edge is better trimmed, and 

the asymmetry is reversed.  

Pulse asymmetry is a characteristic feature of mode-locked two-section quantum dot 

lasers [22]. The variation of pulse asymmetry has been studied before in dye lasers [23], 

and simulated for a microchip laser system [24], and holds promise for solitonic 

applications such as chirp compensation and pulse compression. It is in such instances 
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that simulation results of the DDE model seeded with measured parameters can provide 

an invaluable aid to complement the diagnostic techniques mentioned above. 

3.5 Chapter Summary 

This chapter served as the first demonstration of how measurements performed on an 

actual device over a range of operating conditions can be transformed into dimensionless 

inputs for the DDE model, which can then be used as an extremely powerful tool to gain 

insight into numerous aspects of the output dynamics of the device. 

As an added benefit of deriving equations to transform measured quantities into 

dimensionless model parameters, a novel and innovative technique to estimate the carrier 

relaxation ratio of the device from basic gain and loss measurements was shown to 

provide a viable alternative to conventional pump-probe methods. This is an especially 

useful method of estimating the carrier relaxation ratio of the device at each operating 

point, where the objective might be to simulate device output over a wide range of 

operating conditions. 

Results of simulation with measurement-extracted parameters indicated the following for 

stable, fundamental mode-locking for quantum dot devices: 

 Low values of linewidth enhancement factor in the gain and absorber sections at 

or near threshold. 

 Low values of unsaturated gain and absorption (which would suggest operation at 

higher temperatures).  

Simulation results also enabled invaluable insight into sudden and unexpected trends in 

the output dynamics, such as a sudden flipping of the pulse asymmetry, which are 

typically obscured by autocorrelation measurements. This nonlinear dynamical trend was 
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confirmed for the first time with FROG measurements on the device, while the model 

was used to acquire insight into the underlying physical mechanism governing the trend. 

In conclusion, this chapter showed numerous instances of how several of the properties 

unique to QD systems are, in fact, embedded in the parameters extracted from the device, 

so that the model, in its original form, with no additional equations or parameters, can 

itself act as a robust and powerful theoretical framework to analyze device dynamics. 

In the next chapter, we look at some of the predictive capabilities of the model.   
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Chapter 4  

Predictive Capabilities of the DDE Model 

 

Chapter 3 explored the analytical capabilities of the extended DDE formalism [1, 2], 

demonstrating its ability to provide vital insight into certain dynamical trends, typically 

observed during experimentation as irregular intensity fluctuations, coupled with sudden 

transitions in the output pulse dynamics. A parameter sensitivity analysis showed the 

linewidth enhancement factor to have a profound influence on pulse structure (§3.3.2). 

This was later corroborated in §3.4.2, where the choice of linewidth enhancement factor 

was seen to determine pulse asymmetry. The ability to be able to understand and control 

the nonlinear dynamical regimes of operation of a device can be readily seen to be 

critically important for at least a couple of reasons: 

i. Dynamical instabilities in semiconductor lasers, arising from device operation in 

unstable regimes, can be severely detrimental to device performance and in 

certain cases, even lead to device failure. Thus, the ability to be able to predict 

(and potentially avoid) unstable regimes in advance is highly desirable. 

ii. Controllabili                           a   n        n  a        n  a       "     ” a 

device out of a particular dynamical state of operation, and into another, desired 

state. This is often the case, for instance, when the device is sought for a bistable 

operation (such as wavelength-switching) or to switch the output from 

fundamental to higher –order mode-locking dynamically, while the device is in 

operation.  
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The nonlinear delay-formalism of the DDE model provides a natural framework to 

predict such regimes mathematically, and enables a promising approach for dynamical 

controllability. To this end, the powerful predictive capabilities of the DDE model are 

explored in the context of each of the above instances in the present chapter (Chapter 4). 

Section 4.1 presents commonly-encountered unstable dynamical trends predicted by the 

model, such as pulse breakup into side lobes and satellite pulses (§4.1.1), and the closely-

related dynamics of split-pulsing (§ 4.1.2). Section 4.2 then explores the predictive 

capabilities of the model for harmonic mode-locking. Conclusions are given in section 

4.3. 

 

4.1 Dynamical Instabilities 

Dynamical instabilities in semiconductor lasers arising from device operation in unstable 

regimes can be severely detrimental to device performance [3]. High performance 

applications such as high bit rate communications systems and optical clocking, rely on 

the quality and stability of both the output pulse trains, as well as individual pulse 

structures [4]. Output pulse structure is a signature of whether the regime of operation of 

a mode-locked laser is stable or unstable [5]. Understanding such parasitic effects is 

critical to being able to minimize their occurrence. On the other hand, certain applications 

such as chaos synchronization look to exploit the chaotic dynamics of device output as a 

way of making data transmission secure [6].  

In this section, we study two commonly-encountered dynamical instabilities – pulse 

break-up leading to the formation of side lobes and satellite pulses, and split-pulsing, 

observed experimentally in passively mode-locked two section quantum dot lasers – 
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using  the DDE model. It may be recalled from Chapter 2, that in constraining the 

parameter space of the model to measured values, we were left with the linewidth 

enhancement factors in the gain and absorber sections, as the two free parameters. The 

DDE model predicts that the most stable operating condition for pulse formation is when 

the gain section linewidth enhancement factor ( g ) is set equal to the absorber section 

linewidth enhancement factor ( q ). In [7] and [8], detailed analyses of dynamical 

regimes using bifurcation diagrams showed that the shortest mode-locked pulses with the 

highest peak power are achieved for qg   . Furthermore, the effect of increasing 

g above q is seen to have a severely detrimental influence on pulse structure, causing a 

rapid degradation of the output to chaotic fluctuations. 

The aforementioned scenario is of great practical interest, as it enables a study of 

dynamical instabilities in the device output. Consequently, the approach in the following 

section follows the approach of Chapter 3, with the notable exception of qg   .  

4.1.1 Side Lobes and Satellite Pulses 

Side lobes and satellite pulses are both observed fairly routinely in experiment, as shown 

in Fig. 4-1 a.) and b.). The data was acquired experimentally using a high speed 

oscilloscope (140 GHz Tektronix DSA 8200 Digital Serial Analyzer). 
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Figure 4-1: High Speed Oscilloscope output for a.) 0 V absorber bias, 100 mA gain section pump 

current, and b.) - 4.5 V absorber bias, 135 mA pump current – the second pulse is much weaker 

compared to the first, and appears as a satellite pulse on the trailing edge. 

 

As seen from Fig. 4-1a.), at a 0 V absorber bias, the satellite pulse following the main 

pulse is much stronger than for the - 4.5 V absorber bias condition shown in Fig. 4-1b.), 

where the satellite pulse is suppressed and appears as a slight trailing edge instability. 

Table 4-1 shows simulation parameters extracted from measured values at different 

operating conditions.  
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Table 4-1a: Simulation parameters over bias voltage at 20 
o
C and 60 

o
C 

Parameter           

0V 

          

0V  

          

-3V 

T 3.23 4.17 7.10 

G(0) 3.33 2.89 3.27 

Q(0) 2.33 2.20 2.43 

g  2.0 2.0 2.0 

q  0.5 0.5 0.5 

s 2.68 4.83 9.75 

  0.13 0.08 0.04 

  29.14 18.0 13.24 

  0.304 0.304 0.304 

 

The device simulated here is the same as the device simulated in Chapter 3 (ZLG967E, 

parameters extracted on Wafer 967). It may be noted form the values of   in each case, 

that the device simulated in this case has a relatively narrow gain-bandwidth. Fig. 4-2a 

shows the results of simulation for the parameter set in the first column of Table 4-1a.  
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Figure 4-2a: Highly unstable regime predicted for the          ,  abs = 0V, g = 2.0, q = 0.5 

case. Model predicts a combination of pulse-breakup and side lobes.   

 

A highly unstable regime of operation is predicted in this case, involving a combination 

of pulse- breakup seen from the two higher intensity lobes, and a smaller side lobe on the 

leading edge.   
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Figure 4-2b:      a   n                         ,  abs = 0V, g = 2.0, q = 0.5 case. Model 

predicts a small side lobe on the leading edge. 
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Mode-     n   n  a         a      d    d             a       “       d” a  an     a  d 

temperature for the same absorber bias condition of 0V, as seen from Fig. 4-2b. In this 

case, a very small side lobe is seen to appear on the leading edge. 

Finally, the application of a moderate bias at elevated temperature is predicted to generate 

satellite pulses on the trailing edge, with energy exchange-coupling between the main 

pulse and the satellite pulse as seen from Fig. 4-2c.  
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Figure 4-2c:      a   n                         ,  abs = -3V, g = 2.0, q = 0.5 case. Model 

predicts a satellite pulse on the trailing edge, with energy-exchange with the main pulse. 

 

Thus, for low values of the spectral filtering coefficient representative of devices with a 

narrow gain-bandwidth, the model predicts that the output pulses are prone to pulse 

breakup and leading or trailing edge satellite pulses for a difference in the linewidth 

enhancement parameters between the gain and absorber sections.  
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4.1.2 Split-Pulsing Dynamics [9] 

This dynamical trend was observed on the  output of a two-section, passively mode 

locked quantum dot laser with an optimized six-stack InAs Dots-in-a-Well (DWELL) 

active region similar to the device simulated in §4.1.1, but with a wider gain-bandwidth. 

Output pulses were observed on a high speed sampling oscilloscope (140 GHz Tektronix 

DSA 8200 Digital Serial Analyzer). The critical advantage of using this oscilloscope is 

the ability to capture pulse train dynamics over timescales on the order of nanoseconds, 

as well as individual pulse structures. 

For an absorber bias of -3V and for gain currents in the range 90 mA ≤  gain ≤   5  A, a 

split-pulsing output as shown in Fig. 4-3 was observed, wherein the individual pulse 

structures are characterized by two split lobes, varying in relative intensity over each 

round trip. 
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Figure 4-3: The split-pulsing dynamic, experimentally measured on a device similar to the one 

simulated in the previous section, but with a larger gain-bandwidth. 
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Since the device used in the experiment had a similar layer structure as the device used 

previously (the only differences being the 6-stack layer structure and a wider gain-

bandwidth), the split-pulsing dynamic was simulated with a nearly identical parameter set 

to the values shown in the first column of Table 4-1a, shown below in Table 4-1b. 

Table 4-1b: Simulation parameters for the split-pulsing dynamic  

Parameter 0 V 

 T 3.226 

g0 0.4329 

q0 0.871 

g  2.0 

q  0.5 

s 2.676 

  0.13 

  53.3 

  0.304 

 

The wider gain dispersion was modeled with a larger value of the spectral filtering 

coefficient, representative of a larger number of modes participating in the mode-locking 

process, as seen from Table 4-1b. 

Fig. 4-4 shows the simulation results obtained using the parameters listed in Table 4-1b. 
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Figure 4-4: Simulation results of the split-pulsing dynamic using the DDE Model. 

  

Pulse-splitting in a passively mode-locked laser has been previously attributed to phase 

modulation-instability arising from the effective feedback of the medium on the 

circulating pulse [10], as a result of the response of the medium to the incident pulse, 

which perturbs the latter. In the DDE model derived in [7], it is evident that the effect of 

feedback due to the gain and absorber media is embedded in the first equation of the 

system, wherein the evolution of optical field at the present time   is governed by the 

optical field, saturable gain and saturable absorption a time  T , where T represents a 

delay parameter.  
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A sensitivity-analysis of the simulation result shown in Fig. 4-4 revealed a key finding – 

the split-pulsing effect is extremely sensitive to the difference in the linewidth 

enhancement factors (LEFs) of the gain and absorber media. Considering that the LEFs 

appear only in the complex exponential phase term in the first equation of the DDE 

model, it is reasonable to expect phase modulation instabilities when they are subjected to 

a perturbation. The effect of feedback of the medium on pulse structure can be clearly 

seen in Fig. 4-5a and b.  
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Figure 4-5a: Roundtrip pulse dynamics for αg   αq = 0.5. 

In Fig. 4-5a, for the case of equal LEFs in the gain and absorber media, pulse formation 

follows the usual dynamics, whereby a strong single pulse saturates the gain and absorber 

media such that a brief window of net gain allows for the pulse to be sustained. However, 

in the case of the unequal LEFs, the initial split lobe appears as a weak instability on the 
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leading edge, caused by the fact that as the leading edge of the pulse enters the absorber 

medium, it sees a considerably lower LEF compared to the part of the pulse still in the 

gain medium. The response of the gain and the absorber media to this weak pulse is a 

slowing down of the gain and absorber saturation times, as seen from the increasingly 

gradual dip in the saturable gain and absorber profiles in Fig. 4-5b.  
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Figure 4-5b: Roundtrip pulse dynamics for αg    , αq = 0.5. 

The part of the pulse following this initial lobe is narrower and more intense, so that it 

hastens the saturation and recovery profiles of the saturable gain and absorption. Over 

several round trips, the weak, initial lobe sees gain for a longer time than the main lobe 

following it, and is amplified more with each round trip. Conversely, the initially 

dominant main lobe sees less gain and more loss with each round trip, and is 

progressively attenuated. The end result is that the feedback of the medium amplifies the 
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weaker lobe and attenuates the initially stronger lobe to the point where the initially 

dominant lobe is completely suppressed, by which time a new leading edge instability 

(weak lobe) is seen to form, and the process repeats. 

A similar analysis can be applied to each of the dynamical instabilities seen in § 4.1.1, 

where in each case, the degradation in pulse structure can be interpreted from a careful 

inspection of the round trip gain and loss profiles, directly obtained from DDE 

simulations for that case. From the results obtained in § 4.1.1 and § 4.1.2, it may be 

inferred that the DDE model predicts the following: 

i. A difference in  - parameter values in the gain and absorber sections will 

quickly lead to degradation in the output pulse structure. 

ii. This degradation is especially pronounced for pulses emitted by devices with a 

narrow gain-bandwidth operating at lower temperatures, where the output can be 

prone to a combination of effects such as pulse breakup and side-lobe formation. 

And while such instabilities are predicted to be less drastic at elevated 

temperatures, they are still significant. 

iii. For devices with a wide gain dispersion profile, the model predicts the closely-

related dynamic of split-pulsing, where the split lobes of each output pulse 

exhibit energy exchange-coupling. This prediction was confirmed with high 

speed oscilloscope measurements of a device fabricated with a wide gain-

dispersion profile.  
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4.2 Toward Higher Repetition Rates – Dynamical Transitions to Harmonic 

Mode-Locked (HML) Regimes 

The focus of the last section was the dynamical instabilities arising from a difference of 

linewidth enhancement factors seen by the pulse as it propagates through the gain and 

absorber media. In the remainder of this chapter, the powerful predictive capabilities of 

the model are shown to offer a promising pathway toward the generation of higher 

repetition rates by leveraging the dynamics of pulse-splitting and eventual breakup into 

satellite pulses, under the right conditions, to enable a dynamical switching to stable 

higher-order mode-locking regimes. 

4.2.1 Achieving Higher Repetition Rates with Harmonic Mode-Locking 

Quantum dot mode-locked lasers have generated considerable interest in recent years as 

promising sources of low energy, low jitter, stable pulse trains ([11], [12]) for precision 

applications such as high bit rate optical communications ([4],[13], [14]) and clocking
 

([15], [16]) where identical pulses with a regular shape are sought at a desired repetition 

rate. The typically stringent (and often competing) performance requirements for such 

applications include high repetition rates on the order of tens of GHz, peak powers on the 

order of a few Watts and sub-10 ps pulse widths, all while maintaining stable pulse 

quality over variable operating conditions. To this end, recent work in our group and 

others has shown that higher repetition rates can be achieved without compromising on 

the other performance metrics aforementioned by implementing techniques such as 

making the device reconfigurable [17] (wherein, the position of the saturable absorber is 

varied within the cavity) and harmonic mode-locking using the double-interval technique 
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[18] (wherein two saturable absorber sections positioned at specific locations in a multi-

section device are used to stimulate a specific higher order repetition rate). 

A key motivating factor in the quest for such techniques are the limitations inherent to 

simple, two-section QDMLL devices, such as the highest fundamental repetition rate 

achievable being limited by the cavity length (which, in turn, is limited by the relatively 

low maximum attainable optical gain that is characteristic of QD structures). The 

standard approach toward the design, fabrication and characterization of such devices 

involves an extensive cycle of iterative design and testing, where the objective is to find a 

configuration(s) that is acceptable for the target application. In order to make this 

procedure more streamlined and efficient, a robust predictive modeling capability is 

highly desirable, since such a tool will firstly enable experimentation guided by 

theoretical predictions, as opposed to a trial-and-error approach. Secondly, as mentioned 

at the beginning of this chapter, numerical simulations allow a detailed study of how the 

nonlinear dynamics of the output are impacted by a variation of the input parameters, 

information that is critical to achieving controllability over device performance. 

The objective of this section is to build on previous efforts to better understand the pulse 

characteristics and mode locking stability of passively mode-locked QDMLLs 

([19],[20]), with the objective of going a step further in providing a predictive guideline 

toward achieving higher pulse repetition rates. As in previous sections, the DDE model
 

seeded with parameters measured on an actual device is used to simulate the output mode 

locking regimes as input parameters are varied. The model parameters corresponding to 

each regime are then mapped to externally controllable parameters, so that the regions of 

fundamental and harmonic mode locking can be represented as a function of parameters 
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that can be varied instantaneously, while the device is in operation. In so doing, we 

develop a scheme to interactively switch the device to a higher or lower output pulse 

repetition rate, using just the external (electrical) bias controls [21]. The approach offers a 

viable technique to achieving variable pulse repetition rates, without the need to re-

engineer the device with additional sections.   

Owing to the consideration that the most stable pulses are predicted by the DDE model to 

occur when g = q , the approach in this section is to work under this assumption. The 

objective then is to find a control parameter that can be varied externally, using the 

electrical bias and temperature controls. This would then enable the experimenter to 

dynamically switch the device from one regime of operation to another. This criterion is 

fulfilled by the parameter m in equations (2-49) and (2-50), from where we recall, 

 00 gqm  . Thus, with m  as the control parameter, the DDE model is employed to 

simulate and study the dynamical regimes of mode-locked operation of the device. The 

mathematical ranges of the parameter m  corresponding to these regimes are then mapped 

to externally-controllable parameters such as gain current and absorber bias voltage. 

Using this approach, a map indicating the approximate regions corresponding to 

fundamental and harmonically mode locked operation is constructed as a function of gain 

current and absorber bias voltage. This is shown to be a highly useful method of getting a 

sense of the highest repetition rates achievable in principle with a simple, two-section 

device, and provides a guideline toward achieving higher repetition rates by simply 

adjusting external biasing conditions instantaneously while the device is in operation, as 

opposed to re-engineering the device with additional passive or saturable absorber 

sections. The general approach could potentially aid the development of numerical 
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modeling techniques aimed at providing a systematic guideline geared toward developing 

microwave and RF photonic sources for THz applications. 

Since the device simulated in this study is the same as the one used in Chapter 3 

(ZLG967E), the simulation parameters are drawn from Table 3-3, which is given below 

for easy reference.   

Table 4-2: Simulation Parameters over bias voltage for device under study at 20 C (Wafer 

ZLG967). 

Parameter 0 V -3 V  -5V 

T 3.23 5.00 6.67 

G(0) 3.33 4.18 4.18 

Q(0) 2.33 3.20 4.55 

g  0.1 0.2 0.5 

q  0.1 0.2 0.5 

s 2.68 4.65 6.90 

  0.13 0.08 0.08 

  29.14 39.15 41.10 

  0.55 0.55 0.55 
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Again, the parameter values measured/extracted as discussed above were used as initial 

conditions for the simulations. Steady state solutions to the system of equations defining 

the model (equations (2-31) - (2-33)) were then found by direct numerical integration 

over two thousand round trip times to allow transients to settle. By varying the pre-factor 

m in equation (2-50), different regimes of mode locked operation were predicted, as seen 

in the following. 

Fig. 4-6a shows the steady state output of the system of equations in (2-31)-(2-33), for 

the operating condition of            and a    a          a      a   (     a   n 

parameters listed in the first column of Table 4-2), for various values of the ratio  m1 of 

unsaturated gain to unsaturated absorption. 

As seen from Fig. 4-6a, simulations predict the onset of pulse formation for (g0/q0) ≈ 

(1/8). Then, as the ratio of (g0/q0) is increased, stable, fundamental mode locking is 

maintained and the pulses are predicted to become more intense. Next, following a very 

brief interval of instability in the fundamental mode-locking regime immediately after 

(g0/q0) = (7/8) (characterized by pulses of variable intensity and pulse width), the device 

switches to stable, second harmonic mode-locking, whereby two pulses are predicted per 

round trip.  

As the ratio (g0/q0) is increased past 1, the mode-locking is predicted to degrade, so that 

the device shows unstable mode-locking initially (with pulses of variable intensity and 

pulse width), and eventually transitions to chaotic behavior.   
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Figure 4-6a: Steady state mode      n               a  d a                a          a ,   ) 

fundamental ML for (g0/q0) = (1/8), ii.) fundamental ML for (g0/q0) = (7/8) and, iii.) 2
nd

 order ML 

for (g0/q0) = 1. 

 

Thus, the simulation results showed that the device exhibits stable, fundamental mode-

     n   n      an   ( / ) ≤ ( 0/q0) ≤ ( / ),  a             d        an     n     a      -

doubling regime. No further higher-order mode-locking regimes were found. 

Fig. 4-6b shows simulation results for an absorber bias voltage of -3V (simulation 

parameters listed in the second column of Table 4-2). In this case, not only does the 

  d      d    a   nda  n a    d       n             ( / ) ≤ ( 0/q0) ≤ ( / ), a    -pulse 

regime for (1/2) < (g0/q0) ≤ ( / ),      n add    n, a      -pulse mode-locked regime of 

operation for (7/8) < (g0/q0) ≤  .      a          a       a    a          a ,       d -

locking was predicted to degrade as the ratio (g0/q0) was increased past 1, giving way to a 

chaotic output. 
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Figure 4-6b: Steady state mode locking regimes      a  d a             -3V absorber bias, i.) 

fundamental ML for (g0/q0) = (1/2), ii.) 2
nd

 order ML for (g0/q0) = (7/8) and, iii.) 3
rd

 order ML for 

(g0/q0) = 1. 

 

Finally, as seen from Fig. 4-6c, the nonlinear dynamics of the device output shows an 

even greater range of operational regimes in its progression from fundamental mode-

     n  (( / ) ≤ ( 0/q0) < (5/8)) to pulse-d     n  ((5/ ) ≤ ( 0/q0) < (3/4)) to pulse-

      n  ((3/4) ≤ ( 0/q0) < (15/16)) to pulse-q ad     n  (( 5/  ) ≤ ( 0/q0) ≤  ),     an 

applied absorber bias of -5V (simulation parameters listed in the third column of Table 4-

2).  
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Figure 4-6c:    ad    a     d       n               a  d a             -5V absorber bias, i.) 

fundamental ML for (g0/q0) = (1/8), ii.) 2
nd

 order ML for (g0/q0) = (5/8), iii.) 3
rd

 order ML for 

(g0/q0) = (3/4), and iv.) 4
th
 order ML for (g0/q0) = 1. 

 

In this case, as the ratio (g0/q0) was increased past 1, an unstable 5-pulse per round trip 

state was predicted in the range 1 < (g0/q0) < 1.3. For (g0/q0) ≥  .3,      utput was 

predicted to be chaotic. 

Table 4-3 summarizes the results obtained in Fig. 4-6a-c. 
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Table 4-3: Predicted ranges of (g0/q0) for various mode locking regimes 

Absorber 

Bias (V) 

Range of (g0/q0) 

Fundamental 

Mode-Locking 

Regime 

Pulse-

Doubling 

Regime 

Pulse-Tripling 

Regime 

Pulse-

Quadrupling 

Regime 

0 ( / ) ≤ ( 0/q0) ≤ 

(7/8) 

( / ) ≤ ( 0/q0) 

< 1 

Not Predicted Not Predicted 

-3 ( / ) ≤ ( 0/q0) ≤ 

(1/2) 

(1/2) < (g0/q0) 

≤ ( / ) 

(7/8) < (g0/q0) ≤   Not Predicted 

-5 ( / ) ≤ ( 0/q0) < 

(5/8) 

(5/ ) ≤ ( 0/q0) 

< (3/4) 

(3/4) ≤ ( 0/q0) < 

(15/16) 

( 5/  ) ≤ ( 0/q0) 

≤ 1 

 

The ranges predicted above in Table 4-3 for the ratio of dimensionless unsaturated gain 

( 0g ) to dimensionless unsaturated absorption ( 0q ) can be mapped to externally-

controllable biasing parameters (gain section pump current and absorber bias voltage) as 

follows.    

From equation (2-50) in Chapter 2, 
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(2-50) 

Consider any specific range for the ratio (g0/q0), for instance, the range for which pulse-

quadrupling is predicted for the -5V bias condition in Table 4-3,      a  ( 5/  ) ≤ ( 0/q0) 

≤  . 
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Using equation (2-50), this range can be expressed as follows: 
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(4-1) 

Re-expressing the inequality as shown in (4-1) yields the range of pump currents at a 

given absorber bias condition and temperature for which a particular mode locking 

regime is predicted, given that the saturable gain G and saturation parameter sare both 

functions of pump current density, extracted directly from modal gain characteristics 

such as those presented in [19]. Using this approach, the following ranges of pump 

current are calculated corresponding to the ranges obtained in Table 4-3: 
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Table 4-4: Predicted ranges of pump current (Igain) for various mode locking regimes 

Absorber 

Bias (V) 

Range of Igain 

Fundamental 

Mode-

Locking 

Regime 

Pulse-Doubling 

Regime 

Pulse-Tripling 

Regime 

Pulse-Quadrupling 

Regime 

0 5  A≤  gain 

≤  5 A 

105mA<Igain 

≤    A 

Not Predicted Not Predicted 

-3    A≤  gain 

≤   3 A 

113mA<Igain 

≤ 3  A 

136mA<Igain 

≤ 4  A 

Not Predicted 

-5  4 A≤  gain 

≤ 4  A 

140mA<Igain≤ 4  A 148mA<Igain≤ 5  A 157mA<Igain≤    A 

 

The ranges shown in Table 4-4 can be represented as a map showing the approximate 

regions predicted for each mode-locking regime, as a function of absorber bias vs gain 

current: 
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Figure 4-7: Predicted regions of fundamental and harmonic mode locking regimes as a function 

of electrical biasing parameters. 

The practical utility of such a map is evident – the experimenter could simply pick an 

operating point on the map, lying within a desired regime of operation and bias the 

device accordingly to achieve a target pulse repetition rate. Following this objective, the 

device was biased to experimentally achieve the harmonic mode-locking (HML) regimes 

predicted in Fig. 4-7. As can be seen clearly from the map, the model predicts a pulse-

doubling regime for all bias voltages, and a pulse-tripling regime between an absorber 

bias of -3 V and -5 V. Several instances of two pulses per round trip were observed 

experimentally for an applied absorber bias with pump currents above 100 mA, although 
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        nd            a    a   a  d a  a        a    “ a       ”              n       a   

of the first (strong) pulse, such as the example seen in the high speed oscilloscope 

measurement for this device earlier in this chapter in Fig. 4-1b, recorded for a gain 

current of 135 mA and absorber bias of   - 4.5 V. 

Three and four pulses per round trip regimes were not observed for this device. Instead, 

as the bias voltage was increased for above threshold pump currents, the output pulse 

shape was observed to exhibit unexpected dynamical trends, such as a reversal of the 

pulse asymmetry, whereby, the leading edge of the pulse displayed a slower rise time 

compared to the trailing edge of the pulse, which showed a considerably faster decay. 

This dynamical trend was discussed earlier in Chapter 3 (§ 3.4.2). 

However, the broad trends predicted by the map generated from simulation results in Fig. 

4-7 served as a useful guide for other devices with a similar epitaxial structure. Consider, 

for instance, the following results, obtained with a 6-stack device with a similar epitaxial-

         , 5 μ    d    a     d  and       a n/     a              n.                  

dynamics were captured using high speed oscilloscope measurements. 

The map in Fig. 4-7 predicts that at low absorber bias voltages, increasing the pump 

current past 100 mA should result in a transition from fundamental to second harmonic 

mode locking. For the device under study (ZLG788AH05), this trend is experimentally 

confirmed in the high speed oscilloscope traces shown in Fig. 4-8 a.)-c.), where for a 

constant absorber bias voltage of 0 V, increasing the pump current from 75 mA (Fig. 4-

8a.)) to 100 mA (Fig. 4-8b.)) shows the appearance of a second, weaker pulse following 

the main pulse in each round trip. A further increase of pump current to 125 mA causes 

the appearance of a two-pulse state, where alternate pulses are identical (Fig. 4-8c.)).   
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Figure 4-8: Output pulse dynamics for Device ZLG788AH05 (Labs = 1 mm)  constant absorber 

bias of 0 V for a.) Igain = 75 mA b.) Igain = 100 mA, and c.) Igain = 125 mA. 

 

As is evident from the measured output data, the critical advantage of using this high 

speed sampling oscilloscope is the ability to capture output pulse train dynamics on the 

order of nanosecond timescales, as well as the individual pulse shapes comprising the 

pulse trains. 

Further, the map predicts that for currents above 105 mA, if the absorber bias voltage is 

increased for a fixed value of pump current, the device should produce two pulses per 

round trip for low and moderate bias voltages ranging from 0 to -3 V, and switch to 

fundamental mode-locked operation for stronger bias voltages ranging from -4 to -6 V.    

a.) b.) 

c.) 
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In this case, the device tested experimentally was identical to the previous device, except 

for a slightly higher gain-to-absorber length ratio (Device ZLG788AH03, Lg = 7.2 mm, 

La = 0.8 mm). 
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Figure 4-9: Output pulse dynamics for Device ZLG788AH03 (Labs = 0.8 mm) a constant gain 

current of 100 mA, with, a.) Vabs = 0 V b.) Vabs = -2 V, and c.) Vabs = -3 V, and d.) Vabs = -6 V. 

 

Again, as seen from Fig. 4-9 a.)-d.), excellent agreement is seen between the predictions 

of the map in Fig. 4-7 and experimental observations for this device. For a pump current 

of 100 mA and an absorber bias of 0 V, the device is observed to be stably mode-locked, 

producing two pulses per round trip (Fig. 4-9a.)), and this state of second-harmonic 

mode-locking is maintained as the absorber bias is increased to -1V and -2V (Fig. 4-

9b.)). 

a.) b.) 

c.) d.) 
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However, keeping the current fixed at 100 mA, when the absorber bias is increased to -

3V, the device switches to a state of stable, fundamental mode-locked operation (Fig. 4-

9c.)). This state of stable, fundamental mode-locking is maintained as the bias voltage on 

the absorber section is increased, with the best pulse quality achieved at a -6 V absorber 

bias (Fig. 4-9d.)). 

And again, despite the numerous experimental observations of dynamical switching from 

fundamental to second-harmonic mode-locking and vice-versa, higher-order mode-locked 

states were extremely difficult to observe in most cases. 

However, for one particular device (ZLG788A-AV06), under a gain section pump current 

of 166 mA and a very high absorber bias voltage of -7 V, a noisy, but stationary state of 

pulse-tripling was observed, seen in the high speed oscilloscope trace shown in Fig. 4-10. 

0.0 200.0p 400.0p 600.0p 800.0p 1.0n

-30.0µ

0.0

30.0µ

60.0µ

90.0µ

120.0µ

 

 

P
o

w
e

r 
(W

)

Time (s)

788A -AV06 (T=20C, V=-7V, I=166mA)

 

Figure 4-10: High speed oscilloscope (140 GHz Tektronix DSA 8200 Digital Serial Analyzer) 

data for a noisy, but stationary 3-pulse state(Device ZLG788A-AV06). 
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Although the harmonic mode-locking map in Fig. 4-7 extends only to an absorber bias of 

-6 V, extrapolation to a bias voltage of -7 V at a pump current of 166 mA predicts a 

three- or four- pulse state. More generally speaking, harmonic locking regimes with more 

than two pulses per round trip are predicted to be in the upper right corner of the map, so 

that the model predicts that for mode-locking regimes higher than second-order, high bias 

conditions (high pump current and strong absorber bias voltage) are necessary. 

Experimental observations show that while it is extremely difficult to achieve mode-

locking regimes higher than second-order, it is possible, likely with careful device design 

and engineering, to achieve at least a pulse-tripling state, predicted by the model. 

 

4.3 Chapter Summary 

In this chapter, the predictive capabilities of the DDE model were explored in a couple of 

different contexts of practical importance. With a parameter space of just nine 

parameters, seven of which can be experimentally-extracted from measurements on the 

specific device under study, the model offers a powerful theoretical tool to study the 

nonlinear dynamics unique to that device. 

First, the model was constrained as usual with measurement-extracted parameters, and 

the impact of unequal values of the linewidth enhancement factor in the gain and 

absorber sections on pulse structure was studied. While the results showed a degraded 

pulse structure for all cases with a significant difference of linewidth enhancement factors 

in the gain and absorber sections, the instabilities were predicted to be particularly severe 

for devices with a low gain-bandwidth profile (characterized by lower values of the 

spectral filtering coefficient ) operated at lower temperatures, which included a 
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combination of pulse-splitting and satellite lobes. For such devices, operation at higher 

temperatures was predicted to temper the instabilities to some extent, but they were still 

found to be significant. Next, for devices with a wide gain-dispersion profile 

(characterized by higher values of the spectral filtering coefficient  ), a difference of the 

linewidth enhancement factors in the two sections predicted a closely-related dynamical 

instability, split-pulsing, wherein the individual pulse structures are characterized by two 

split lobes, varying in relative intensity over each round trip. The dynamic was 

interpreted as the synergistic interaction between the lobes of each pulse with the 

medium, following which the response of the medium was to apply feedback to perturb 

the gain and absorber dynamics of the device and thereby condition the pulse shape, 

resulting in one or the other of the two split lobes growing at the expense of the other. 

This prediction was confirmed with high speed oscilloscope measurements of a device 

fabricated with a wide gain-dispersion profile. 

In the second part of the chapter, the DDE model was shown to offer a robust predictive 

modeling capability toward achieving higher pulse repetition rates for two-section, 

passively mode-locked quantum dot lasers. Consequently, the model was used to first 

find the regimes of mode-locked operation of a given device wherein the device was 

predicted to exhibit fundamental or harmonic mode locking, as a function of the 

dimensionless model parameters. The model parameters were then mapped to externally-

controllable parameters (gain section pump current and absorber bias voltage), and the 

regimes of mode-locked operation were represented on a map, as a function of the said 

parameters that can be interactively controlled while the device is in operation. Excellent 

agreement was observed between the predictions of the model and high speed 
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oscilloscope measurements of the output pulse dynamics of fundamental and second-

harmonic mode-locking for two devices with a similar epitaxial-layer structure, the first 

consisting of a 7 mm gain/1 mm absorber section, and the second with a 7.2 mm gain/0.8 

mm absorber section (both with a 5 μ    d    a     d  d    n). A noisy, but stationary 

pulse-tripling regime was experimentally observed at a bias condition predicted by the 

model for one particular device. The approach not only presents an invaluable guideline 

toward achieving higher repetition rates without the need to re-engineer the device, but 

also points toward the highest repetition rates achievable in principle for a given two-

section device. 

Based on the predictions of the model in this chapter, we note that a critical requirement 

for both, the avoidance of unstable dynamical effects, as well as the generation of higher 

repetition rates by dynamically switching the device to stable, harmonically mode-locked 

regimes requires some method of direct control over the linewidth enhancement 

parameter seen by the pulse, such that not only is this value minimized to the maximum 

extent possible, but the difference in the value seen by the propagating pulse in the gain 

and the absorber sections needs to be as small as possible. 

One technique that has been established recently as a promising method of manipulating 

the linewidth enhancement factor of a mode-locked quantum dot laser is externally 

applied optical feedback. In the next chapter, we present recent experimental results 

analyzing device performance under the influence of external optical feedback with 

regard to standard performance metrics such as RF linewidth and phase noise, which act 

as qualitative indicators of the linewidth enhancement parameter seen by the propagating 

pulse.  
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Chapter 5  

Experimental Study of Device Dynamics under External Optical 

Feedback at Elevated Temperature 

 

In chapters 2, 3 and 4, the nonlinear dynamical trends of a passively mode-locked 

quantum dot laser were studied numerically using a Delay Differential Equation model 

with operating temperature, gain section current, and absorber bias voltage as the external 

control parameters. Based on the results of simulation in Chapter 4, the linewidth 

enhancement factor (LEF) seen by the pulse in the gain and absorber sections of the 

device was predicted to be critical to determining the output dynamics of the device, so 

that any variation in the values of the LEF in the two sections was seen to quickly 

introduce instabilities into the output. While the electrical bias controls influence the 

values of the LEF in the individual sections by virtue of influencing the respective carrier 

concentrations, a more direct form of external control is highly desirable. One such 

mechanism of external control is afforded by external optical feedback, which has, in 

recent works, been shown to dramatically improve RF performance metrics such as RF 

linewidth, phase noise and pulse-to-pulse timing jitter [1-5]. In an effort to gain insight 

into the same, one of the studies undertaken as part of this dissertation was to 

experimentally investigate the RF and optical performance of a passively mode-locked 

two section device operating at elevated temperature, with and without the influence of 

optical feedback from an external reflector.      

This chapter is organized as follows. After a brief overview of the setup used for the free-

running device characterization in section 5.1, section 5.2 starts with basic device 
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characterization using L-I curves and mode-locking stability maps over temperature. A 

more detailed characterization using RF and optical spectra is then presented. Section 5.3 

presents similar characterization results for the device operating under externally applied 

optical feedback, first as a function of variable optical delay (section 5.3.1), and 

subsequently, as a function of feedback strength (section 5.3.2). Concluding remarks are 

presented in section 5.4. 

5.1 Experimental Setup to Characterize the Solitary Device 

As in the previous cases, the epitaxial structure of the laser was comprised of a multi-

  a   “    -in-a-W   ” ( WE  )          ,  a    a  d a  an       z d  -stack active 

region, with InAs QDs embedded in an InGaAs QW, epitaxially grown by solid source 

Molecular Beam Epitaxy (MBE) on a GaAs substrate. The total laser cavity length was 

7.8 mm, with a 6.7 mm gain section and a 1.1 mm saturable absorber section (as shown 

in the schematic in Figure 5-1). A                     a  n  (  ≈ 95%)  a  a     d        

facet adjacent to the SA section, while the facet adjacent to the gain section was left as-

   a  d (  ≈ 3 %).      n      -section device was packaged in an encapsulating module 

to minimize the effects of external noise.The packaged module is affixed onto an 

industry-standard 14-  n “         ”    n ,        na           a       n          an 

in-built thermo-electric controller, as well as electrical biasing for the absorber and gain 

sections. Figure 5-1 shows a schematic of the experimental setup. 
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Figure 5-1: Schematic of a 2-section device in the free-running configuration (RFSA: RF 

Spectrum Analyzer, DSA: Digital Serial Analyzer, OSA: Optical Spectrum Analyzer, TEC: 

Thermoelectric Control module). 

 

5.2 Free-Running Characterization of the Device 

The light-current (L-I) characteristics for the device are shown in Figure 5-2. 

 

Figure 5-2: L-I curves as a function of absorber bias for the device under study. 

RFSA 

DSA 

OSA 

TEC 

La + Lg = 1.1 mm + 6.7 mm 
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Based on the L-I curves for the device, it may be inferred that mode-locking performance 

would likely begin to degrade at a -5V absorber bias. This was later confirmed during the 

feedback characterization of the device, where it was found that due to the inherently low 

output power of the pulses emitted from the free-running device at a -5V absorber bias 

condition, the signal-to-noise ratio after roundtrip propagation through the external cavity 

(feedback loop) was too low for a reasonable RF and optical characterization. 

In order to find the optimum operating conditions for stable mode-locking, the device 

was first operated in a free-running configuration, without the external feedback loop. 

Based on the quality of output pulses obtained, a mode-locking map was generated, as 

shown in Fig. 5-3. 

40 60 80 100 120 140 160 180 200 220

0

1

2

3

4

5

6

 

 

A
b
s
o
rb

e
r 

R
e
v
e
rs

e
 V

o
lt
a
g
e
 (

V
)

Gain Current (mA)

 20 C 

 40 C

 60 C

 70 C

 
Figure 5-3: Map showing regions of mode-locked operation as a function of bias conditions. 
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As seen clearly from the mode-locking map in Fig. 5-3, the device exhibited the widest 

region of operational stability (in terms of gain section pump current and absorber reverse 

  a      a  ) a  an     a  n        a             .               previous experimental 

work [6-10], where mode-locking performance was found to be o        n     5  –       

range. In [6-8], the improved mode-locking performance in this elevated temperature 

range was attributed to faster absorber recovery times, owing to faster rates of thermionic 

emission. Furthermore, the findings in [9] and [10] suggest additional factors governing 

the optimum mode-locking stability, such as reduced values of unsaturated gain and 

absorption, so that the propagating pulse is subjected to less distortion, and consequently, 

more gradual shaping.  

In the RF domain, the line width of the fundamental frequency of the RF spectrum 

observed on an electrical spectrum analyzer is a signature of the phase noise of the 

device. In order to reduce the latter, it is critical to reduce the former to as low a value as 

possible. Resonant optical feedback, wherein light reflected from an external cavity 

propagates a distance that is approximately an integer multiple of the length of the laser 

cavity, has been shown to dramatically reduce RF line width at room temperature. On the 

other hand, the quality of mode-locked pul       d   d    Q M     a     n     n    

                   a    ,      an           d -     n         an    n     5  –       

range for typical devices. Consequently, the effects of optical feedback at elevated 

temperature not only offer a natural and important avenue for further investigation, but 

the complexity added by effects such as absorption saturation, gain/absorption peak 

“ a  -   ” and     q an      n  n d   a          (Q  E)   a            n    an   n Q  

systems at elevated temperatures combined with an applied absorber bias voltage, could 
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potentially result in device behavior that shows a significant departure from performance 

at lower temperatures. To this end, the following part of this dissertation is devoted to 

investigating the dynamical trends exhibited by the RF and optical spectra of a passively 

mode-locked QD laser operating at elevated temperature, with and without the influence 

of external optical feedback. In accordance with the map shown in Fig. 5-3, the device 

exhibited optimum mode-     n         an   a       ,      a          a  n        a     

was fixed at this value. The first step toward the feedback characterization of the device 

is to acquire the RF and optical spectra of the solitary (free-running) device. The 

corresponding spectra measured under externally applied optical feedback can then be 

compared to these spectra.  a    5-              a    d   n       q  n   and      n  

  d    a                 -  nn n   a    a  an     a  n        a              and a  a n 

section pump current of 215 mA, as a function of absorber bias voltage.  

Table 5-1: Center Frequency and RF Linewidth Measurements of the Solitary Device (          

and Igain = 215 mA) 

Absorber Bias 

(V) 

Centre Frequency 

(GHz) 

RF Linewidth (Hz) 

1.5 5.38151 25567 

2 5.38322 4434 

2.5 5.38426 4509 

3 5.38595 272770 

3.5 5.3864 160055 

4 5.40605 28874 
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The measurements were performed by directly connecting the fiber pigtailed output of 

the solitary device to a 45 GHz bandwidth photodiode coupled to an RF spectrum 

analyzer. The variation in the RF line width of the device with applied absorber bias may 

be plotted as shown in Fig. 5-4. 

 

 

 

 

 

 

 

 

 

Figure 5-4: RF linewidth measurements of the solitary device as a function of absorber bias (    

      and  gain = 215 mA).  

 

As apparent from Fig. 5-4, the RF line width of the device shows a very wide variation 

over the range of absorber bias voltages applied, from an ultralow value of 4.5 kHz in the 

-2 to -2.5 V bias range, to a much broader value of 273 kHz at -3 V. 

Prior to considering the effect of externally applied optical feedback, it is instructive to 

study the influence of the applied absorber bias alone. The influence of varying absorber 

bias voltage on the dynamical behavior of two-section quantum dot lasers with an 

integrated intracavity saturable absorber has been previously studied in detail in works 

such as[11] and [12] to account for observed trends such as hysteresis, optical bistability 
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and wavelength bistability. In [11], the continuous wave bistability in the light-absorber 

bias characteristic was attributed to a combination of nonlinear absorption saturation and 

electroabsorption induced by the Quantum Confined Stark Effect (QCSE) caused by an 

applied electric field. More recent work by Feng et al [12] reported wavelength bistability 

in a two-section, passively mode-locked quantum dot laser, wherein the device dynamics 

were attributed to the interplay between spectral hole burning in the gain spectrum of the 

device and QCSE due to the reverse bias applied on the absorber section. Since QCSE is 

key to determining device behavior under an applied absorber bias voltage, it behooves 

us to briefly review this phenomenon here. 

 

5.2.1 The Quantum Confined Stark Effect (QCSE) 

Consider a quantum well structure, which can be thought of as an infinite square well 

potential over a distance L within the semiconductor barrier layer. A particle confined 

within such a potential has an associated momentum vector  Lnk z  , assuming 

confinement in the z-direction. The wavefunction  zn associated with a particle of 

effective mass m  confined in such a potential satisfies the time-independent 

Schrödinger equation, nnn EH  0
ˆ  

   zEz
zmz

nnn  

















1

2

2
 

(5-1) 

where, 0Ĥ represents the unperturbed  Hamiltonian of the system, whereby the 

normalized wavefunction  zn  and eigenenergy nE are given by: 
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The corresponding wavefunctions in the valence band and the conduction band are as 

shown in Fig. 5-5.  

 

Figure 5-5 [13]: Valence and Conduction band wavefunction confinement for the cases of no 

applied bias voltage (E = 0, left) and an applied bias voltage (E ≠  ,      )  
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Light incident on the medium causes interband transitions which leads to photon 

absorption and carrier generation. The transition rate of an electron from an initial state in 

the valence band to a final state in the conduction band is determined by the overlap of 

the associated wavefunctions. The wavefunction overlap between an initial state 

vni , and final state cmf , determines the absorption coefficient 

corresponding to the transition. The application of a bias voltage on the absorber section 

causes a reduction in the energy of the bound states, which, in turn, causes the tails of the 

wavefunctions in the valence and conduction bands to penetrate the previously-forbidden 

band gap region, as can be seen from the diagram on the right side of Fig. 5-5. A careful 

comparison between the energy-level diagrams on the left and right side of Fig. 5-5 

reveals that there is a change induced in the energy-level spacing between the valence 

and conduction band levels upon application of a bias potential. This shift in energy-

spacing can be calculated using Perturbation Theory, so that the applied bias voltage is 

 n      a  d a  a “  a  ”        a   n         a     n an         n        d         n 

equation (5-1): 

appliedUHH ˆˆˆ
0   

(5-4) 

where  is an infinitesimal parameter and appliedÛ  represents the applied absorber bias 

voltage. The modified Schrödinger equation may be expressed as: 

  



 nnnapplied EUH  ˆˆ

0  

(5-5) 
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 where,                                            ...221 


nnnn    

(5-6) 

and,                                                 ...221 


nnnn EEEE   

(5-7) 

Under this new formalism, each state undergoes a shift in its energy due to the perturbing 

potential, which can be calculated as a second-order correction to the unperturbed energy 

[14]: 
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(5-8) 

Thus, the application of the external bias voltage enables penetration into the previously –

forbidden band gap region, which causes an overlap of the electron and hole 

wavefunctions and a change in the energy level-spacing between the valence and 

conduction band levels, which can be found from equation (5-8). This, in turn, allows the 

absorption of photons with energy lower than the band gap of the unperturbed structure. 

This lower energy has the concomitant effect of red-shifting the absorption band edge 

([13], [15]). As reported previously in [12], the overall effect on the laser cavity (absorber 

plus gain section) is seen as a smoothing-out and filling of any notch/hole in the optical 

spectrum, followed by the eventual blue-shift of the gain peak.    

Similar dynamical trends were observed in the device used in this work (ZLG0016). 

Optical spectra were recorded using a Yokogawa ANDO AQ6317C Optical Spectrum 

Analyzer. The d       a      a  an     a  n        a             ,      a n       n  a  
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pumped with a current source set to deliver 215 mA, and the absorber bias voltage was 

varied. 

Fig. 5-6a shows the measured optical spectrum for the free-running device at an absorber 

bias of -1V. This condition was seen to produce the deepest and sharpest spectral hole, 

with a peak-to-valley extinction ratio > 20 dBm. 

 

Figure 5-6a: Free-running      a           a           ,  gain = 215 mA, Vabs = -1V. 

 

As the absorber bias is increased to -2V, the spectral hole widens and becomes less deep, 

with a peak-to-valley extinction of ~ 15 dBm. Simultaneously, the optical spectrum 

broadens on the longer wavelength side, so the tail of the spectrum is now seen to extend 

past the 1305 nm limit (Fig. 5-6b). 
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Figure 5-6b: Free-running      a           a           ,  gain = 215 mA, Vabs = -2V. 

 

The same trend is seen as the absorber bias is increased to -3V (Fig. 5-6c) and 

subsequently to -4V (Fig. 5-6d). The spectral hole appears visibly wider and much 

shallower than at lower bias voltages, with the peak-to-valley extinction now decreasing 

to < 10 dBm, and the spectrum extending to 1310 nm. 

 

Figure 5-6c: Free-running      a           a           ,  gain = 215 mA, Vabs = -3V. 
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Figure 5-6d: Free-running      a           a           ,  gain = 215 mA, Vabs = -4V. 

 

Past a bias voltage of -4V, however, a drastic and rather interesting change is seen. The 

spectral hole disappears, leaving a smooth, continuous spectral envelope, and the entire 

spectrum blue shifts. This is clearly seen below in Fig. 5-6e, where a bias voltage of -

4.5V was applied on the absorber section. The entire spectrum is blue-shifted by ~ 6nm, 

and centred at ~ 1289 nm. 

 

Figure 5-6e: Free-running      a           a           ,  gain = 215 mA, Vabs = -4.5V. 
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The trends seen in the optical spectra shown above in Fig. 5-6a-e suggest the interplay 

between two separate effects caused by varying the bias voltage on the absorber section, 

the formation of a “      a      ”, and the Quantum Confined Stark Effect (QCSE), as 

being the driving factor behind the behavior of the optical spectrum of the device. At low 

bias voltages, spectral hole formation dominates, as seen from the depth and the 

sharpness of the hole formed in the spectrum (Fig. 5-6a and b). As the bias voltage is 

increased, the QCSE first competes with the hole formation at moderate bias voltages, so 

that the spectral hole becomes visibly wider and shallower (Fig. 5-6c and d), and 

eventually dominates, as seen from the complete disappearance of the spectral hole in 

Fig. 5-6e, accompanied by the blue-shift of the spectrum. This entire sequence of events 

shows good agreement with the findings presented in [12]. 

This begs the question of what related effect, if any, is impressed upon the line width of 

the fundamental line of the RF spectra of the photocurrent generated by the device. This 

is critical to getting a sense of performance metrics such as phase noise and timing jitter 

of the device at each operating condition. A glance at Table 5-1 and Fig. 5-4 suggests that 

while regimes of operation where spectral hole formation is dominant generally exhibit 

lower RF line widths compared to the cases where QCSE becomes significant, and the 

transition from the former to the latter could possibly result in a sudden and drastic 

broadening of the RF line width, no clear trends are otherwise identifiable, particularly 

within each regime of operation. 

These issues are investigated in further detail in the next section, where the effect of 

externally applied optical feedback on the dynamics of the device is studied. 
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5.3 Device Characterization under Externally Applied Optical Feedback 

The setup used for optical feedback characterization of the device is shown in Fig. 

5-7.  

 

Figure 5-7: Schematic of experimental setup for optical feedback characterization. 

 

A polarization controller is used to make the feedback beam polarization identical to the 

emitted wave, and the external cavity length in this setup is controlled with an optical 

delay line (ODL) that has a step-controlled motorized delay stage with a resolution of 1 

fs, while the feedback power level is controlled using a variable optical attenuator 

(VOA). This introduces two additional control parameters, in addition to the absorber 

bias voltage – the optical delay setting and the feedback strength. In the following, a 

detailed study of each of these parameters is first performed individually to determine 

their effect, if any, on the RF linewidth and optical spectrum of the device while all other 

control parameters are held fixed. Finally, with the optimum settings of the ODL and the 

VOA determined, the absorber bias voltage is used as the sole control parameter to study 

and compare device performance under optical feedback, relative to the free-running 



 

139 

configuration. The feedback-regime (strong, moderate or weak), designated FBR in this 

chapter, is monitored at port 4 using a back reflection monitor (BRM) power meter.  

Due to the combination of the losses involved in the long external fiber loop-cavity, 

combined with the higher mode-locking threshold at elevated temperature, the pump 

current had to be set above 160 mA in order to get measurable data. Optimum 

performance was observed at 170 mA and 215 mA. 

 

5.3.1 Effect of Varying the Optical Delay Line (ODL) Setting 

 

i. RF Spectrum Characterization: 

Since the free-running characterization of the device showed the -3V bias condition to 

cause the highest linewidth broadening, and consequently, the worst RF noise 

performance, it is highly desirable to study the effect of external optical feedback at this 

absorber bias condition in detail. In this section, the results of RF line width measurement 

as a function of optical delay are presented. The experiment involved biasin      d      

a  an     a  n        a             ,           n          A and an a          a     -

3V. The variable optical attenuator was set to provide a constant back-reflected power 

level of -25 dBm (monitored on the back reflection monitor at port 4 of the setup).  

Table 5-2 shows measured values of center frequency and line width corresponding to the 

fundamental peak of the RF spectrum recorded on an RF Spectrum Analyzer (Agilent 

8565 EC, measurement range 9 kHz – 50 GHz), connected to port 3 of the setup through 

a fast photodiode with a bandwidth of 45 GHz. 
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Table 5-2: Center Frequency & RF Linewidth vs Optical Delay 

Optical Delay 

(ps) 

Center Frequency 

(GHz) 

RF Linewidth 

(Hz) 

   0 5.38923 47043 

10 5.38956 30197 

20 5.38960 31427 

30 5.38953 31479 

40 5.38951 32149 

50 5.38949 33862 

60 5.39030 69820 

62 5.38987 213310 

70 5.38984 13861 

80 5.38935 43160 

90 5.38910 41632 

100 5.38949 33942 

110 5.38949 31833 

120 5.38947 29097 

130 5.38950 28727 

140 5.38948 30005 

150 5.38947 29095 

160 5.38993 14061 

170 5.38946  29083 

180 5.38916 29166 

190 5.38944 31016 

200 5.38946 32032 

210 5.38946 25812 

220 5.38944 32972 

230 5.38943 25517 

240 5.38943 42491 

250 5.38982 200102 

260 5.38953 32741 

270 5.38921 25532 

280 5.38930 45165 

290 5.38944 28248 

300 5.38944 28323 

310 5.38943 21474 

320 5.38941 23660 

330 5.38940 34134 
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Fig. 5-8 shows a plot of the RF line width values reported in the third column of Table 5-

2 as a function of optical delay. 

 

Figure 5-8: RF Linewidth as a function of optical delay (FBR at Port 4 = -25 dBm) 

 

The key features of the plot are a sudden and drastic enhancement of RF line width to 

over 200 kHz at delay settings of 62 ps and 250 ps (values shown in bold in Table 5-2), 

followed immediately by an equally dramatic reduction to much lower values of 13.861 

kHz and 32.741 kHz at delay settings of 70 ps and 260 ps, respectively. The fundamental 

line width traces (red) recorded on an RF Spectrum Analyzer, along with their Lorentzian 

curve fits (black) and extracted optimum 3-dB line widths are shown in Fig. 5-9. The top 

row (Fig. 5-9a) shows the line width broadening corresponding to the peaks at 62 ps and 

250 ps in Fig. 5-8, while the bottom row (Fig. 5-9b) shows the subsequent reduction at 70 

 188 ps 
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ps and 260 ps, respectively. In each case, the resolution bandwidth of the RF Spectrum 

Analyzer was set to 10 kHz. 

 

a.) 

 

b.) 

Figure 5-9: RF Linewidth Measurements a.) ODL 62 ps (left) & 250 ps (right), and b.) ODL 70 

ps (left) & 260 ps (right). 

The broad trends seen in Fig. 5-8 and 5-9 corroborate previous results reported in [2]     

a Q M    nd    x   na       a     d a   a       .  n  a      a ,          d            

line width enhancement seen above in Fig. 5-8 is 188 ps, corresponding approximately to 

the fundamental repetition rate of the device. The concomitant shift of center frequency, 

seen above in Table 5-2, also confirms the observations in [2] for a QDMLL and in [16] 

for a QWMLL.  In addition, the results presented in this chapter also provide 

experimental verification at elevated temperature for the nonlinear dynamical regimes 

predicted through numerical simulation results in [17]. The line width enhancement at 

optical delay settings of 62 ps and 250 ps correspond to the non-resonant case, whereby 

Δf
RF

 =  

213.31 kHz 

Δf
RF

 =  

200.102 kHz 

Δf
RF

 =  

13.861 kHz 

Δf
RF

 =  

32.741 kHz 
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the ratio of the external cavity length to the laser cavity length, Lext/Llas, is not an integer, 

as opposed to the near-exactly resonant case for optical delay settings of 70 ps and 260 

ps, whereby the ratio Lext/Llas is nearly an exact integer value. 

 

ii. Optical Spectrum Characterization: 

As in the case of the solitary device, optical spectra were recorded using a Yokogawa 

ANDO AQ6317C Optical Spectrum Analyzer. The objective of this measurement was to 

determine any possible perturbations to the optical spectra of the free-running device due 

to changes in the ODL setting alone. The gain section was pumped at 170 mA and an 

absorber bias of -3V was applied, while the variable optical attenuator was set to 

maintain a constant feedback power level of -8 dBm at port 4.  Fig. 5-10 shows the 

measured optical spectra. 

 

 

 

 

a.) 

b.) 
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Figure 5-10: Optical spectra at          ,  gain = 170 mA, Vabs = -3V as a function of optical 

delay: a.) Free running b.) 0 ps c.) 60 ps d.) 240 ps and e.) 250 ps. 

The impact of varying the delay setting on the optical spectra is seen from a careful 

comparison of Fig. 5-10b.) and d.) with the profiles seen in Fig. 5-10c.) and e.). The 

spectra in the former case correspond to the nearly-resonant feedback configuration, 

characterized by lower RF line widths (47 kHz and 42.5 kHz respectively, seen in Table 

c.) 

d.) 

e.) 
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5-2), whereas the spectra in the latter case correspond to the non-resonant configuration 

causing a sudden and drastic enhancement of RF line width (seen in Fig. 5-9a). 

Interestingly, the perturbation to the optical spectrum as a result of non-resonant feedback 

appears to be similar to the perturbation caused by the dominance of the QCSE over the 

spectral hole formation effect for the free-running case(discussed in detail earlier in this 

chapter) with increasing absorber bias, wherein the spectral hole widens and becomes 

more shallow.   

 

5.3.2 Effect of Varying the Feedback Strength 

i. RF Spectrum Characterization: 

As mentioned before, the strength of applied optical feedback can be adjusted using the 

variable optical attenuator. Based on this back-reflected power, monitored using a power 

meter in port 4 of the setup, three broad feedback regimes (FBR) were determined – weak 

feedback (back-reflected power FBR < -30 dBm), moderate feedback (-30 dBm < back-

reflected power FBR < -15 dBm) and strong feedback (back-reflected power FBR > -15 

dBm). 

As with the case of variable optical delay, the effect of optical feedback as a function of 

feedback strength for the -3V bias condition is presented first, in view of the severe RF 

line width broadening observed previously in the free-running configuration. The gain 

section was pumped at 215 mA, while the optical delay line was set to 0 ps. 
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Figure 5-11: RF Linewidth measurements at          ,  gain = 215 mA, Vabs = -3V for different 

back-reflected power values. 

 

The line width data shown in Fig. 5-11 show a clear trend. While weak optical feedback 

(-39 dBm) helps reduce the line width considerably from 273 kHz for the free-running 

device to 172.08 kHz, moderate feedback (-20.25 dBm) is much more effective in 

reducing this figure down to 13.5 kHz (highly desirable for most applications). However, 

strong feedback (-4.73 dBm) appears to introduce instabilities resembling modulation 

sidebands surrounding the fundamental frequency, as seen in Fig. 5-11d. 

The corresponding set of plots for the -2V absorber bias case show the opposite trend. As 

seen in Fig. 5-12a, b and c, the free-running configuration shows the best RF 

performance, with a very low linewidth of 4.5 kHz. This figure broadens slightly to 

10.315 kHz under weak external feedback, and continues to broaden as the feedback 

strength is increased, broadening to nearly 50 kHz at a moderate feedback ratio of -20 

dBm. Past -18 dBm, the effect of feedback is to introduce modulation sidebands in the 

Δf
RF

 =  273 

kHz 

Δf
RF

 =  

172.081 

kHz 

Δf
RF

 =  

13.527 kHz 

a.) b.) 

c.) d.) 
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fundamental peak, as was the case with a -3V absorber bias. 

 

 

Figure 5-12: RF Linewidth measurements at          ,  gain = 215 mA, Vabs = -2V for different 

back-reflected power values. 

This set of trends becomes even more pronounced for an absorber bias condition of -4V, 

where the line width broadening is much more severe with the application of feedback. 

 

 

Figure 5-13: RF Linewidth measurements at          ,  gain = 215 mA, Vabs = -4V for different 

back-reflected power values. 

Δf
RF

 =  4.5 

kHz 

Δf
RF

 =  

10.315 kHz 

Δf
RF

 =  

28.874 

kHz 

Δf
RF

 =  

86.257 kHz 

Δf
RF

 =  

196.905 kHz 

Δf
RF

 =  48.7 

kHz 

a.) b.) 

c.) d.) 

a.) b.) 

c.) d.) 



 

148 

As seen from Figure 5-13a, b and c, a free-running line width of 28.874 kHz is broadened 

to 86.257 kHz under weak feedback (-40 dBm), and is further broadened to almost 200 

kHz under moderate feedback (-15 dBm). As in previous cases, strong feedback is seen to 

introduce modulation sidebands into the fundamental peak, as seen in Figure 5-12d for a 

strong feedback condition of -5.36 dBm. 

In order to get further insight into the trends discussed above, it is desirable to study the 

associated optical spectra. 

 

ii. Optical Spectrum Characterization: 

 -3V Absorber Bias: 

We recall from Fig. 5-11 a.), b.) and c.) that a dramatic RF performance improvement 

was observed for the weak and moderate feedback ratio conditions. Consider the 

behavior of the associated optical spectra, shown below in Fig. 5-14 a.) and b.). 

 

 

 a.) 
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Figure 5-14: Optical spectra at          ,  gain = 215 mA, Vabs = -3V a.) Free-running and b.) 

Weak optical feedback (FBR -39 dBm) 

As discussed previously in Section 5.2 (Figure 5-6 c.) and Figure 5-14 a.) above), the 

hole formed in the optical spectrum of free-running device becomes increasingly wider 

and shallower with increasing absorber bias, a clear indication of the influence of the 

QCSE beginning to compete with the spectral hole formation effect.  

 n       n   ,    n   a   x   na       a     d a      a       “         a an  ”  a   in 

favor of the hole formation effect for this set of operating conditions, as seen from Figure 

5-14b, leading to a significant reduction in the RF line width. This effect becomes even 

stronger in the moderate feedback regime, whereby the spectral hole becomes deeper and 

sharper, so that the mode-     n             “  a       a  d” a           n       q  n  , 

leading to a drastically reduced RF line width. 

b.) 
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 -2V Absorber Bias: 

As will be seen in this case and the next, the effect discussed above for the -3V bias 

condition can work both ways, so that a widening of the spectral hole induced by applied 

optical feedback serves to degrade RF noise performance. 

 

 

 

 

Figure 5-15: Optical spectra at          ,  gain = 215 mA, Vabs = -2V a.) Free-running and  

b.) Weak optical feedback (FBR -38 dBm).  

a.) 

b.) 
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A careful comparison between Fig. 5-15 a.) and b.) reveals the subtle difference between 

the optical spectra, and, in particular, the corresponding spectral hole shapes for the two 

cases. The effect of weak optical feedback in this case is to widen the spectral hole 

slightly, compared to the free-  nn n   a  .        ad     a        “  a   n n ”        

bottom tip of the hole, likely triggering a slight mode-competition about the central 

frequency. This, in turn, causes a slight increase in the RF noise figure, observed directly 

as a slight increase in the RF linewidth. 

 -4V Absorber Bias: 

The RF measurements presented previously in Fig. 5-13 a.)-d.) suggest that optical 

feedback also degrades RF noise performance in the -4V absorber bias condition. As in 

the previous case of a -2V absorber bias condition, the underlying cause for this 

degradation appears to be a direct consequence of a widening of the spectral hole as a 

result of the applied feedback, seen in Fig. 5-16. 

 

 a.) 
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Figure 5-16: Optical spectra at          ,  gain = 215 mA, Vabs = -4V a.) Free-running and  

b.) Weak optical feedback (FBR -38 dBm) 

The perturbation to the shape of the hole in the spectrum is more pronounced in this case, 

as compared to the -2V bias condition. Owing to a combination of the increasing 

dominance of the QCSE at stronger absorber bias voltages and the degradation due to the 

external optical feedback, a significant widening of the spectral hole occurs, leading to an 

increased degree of mode-competition about the central wavelength, and the RF noise 

figure increases significantly from 28.874 kHz for the solitary device to 86.257 kHz for 

weak optical feedback (-40 dBm). 

5.4 Chapter Summary 

In devices with an inherent spectral hole formation-tendency, external optical feedback 

exhibits complicated dynamics that requires careful investigation. In such devices, the 

interplay between the Spectral Hole Burning (SHB) Effect and the Quantum Confined 

Stark Effect (QCSE) has been shown previously in [12] to cause wavelength bistability in 

b.) 
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the free-running configuration. In this dissertation, this interplay has been shown to also 

affect the RF noise performance of the device, so that a deep spectral hole with a sharp 

profile is observed to generally induce a very low RF line width and vice-versa. 

Optical feedback adds an additional dimension to this dynamic by either aiding or 

hindering the shape of the spectral hole. In the former case, the shape of the spectral hole 

is made deeper and sharper as a result of the feedback, thereby reducing the RF 

linewidth. This observation supports the findings in [18], where the spectral hole burning 

process was made highly favorable by use of a wavelength-selective grating to tune the 

feedback signal to the center frequency of the QD laser. 

A comprehensive understanding of the interplay between the above effects in QDMLLs 

is essential to optimizing high temperature device operation, due to the well-known 

“ a  -   ”       n  a n and a        n   a   a      a  d       a     . W         n    

absorber bias voltages have been shown to be an effective technique to mitigate this peak 

separation and generate better quality pulses [19], the increasing bias voltage is also 

          “ a  -   ” a deep spectral hole and considerably degrade the RF noise 

performance of the device, as seen in this chapter. Under these circumstances, external 

optical feedback, carefully adjusted and optimized to restore the spectral hole to favor the 

lasing frequency, can offer a simple, yet effective solution to generate stable, high quality 

pulses with good RF noise performance. 
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Chapter 6  

Summary and Future Work 

 

In this dissertation, a detailed study of the nonlinear dynamical trends of passively mode-

locked quantum dot lasers was performed theoretically, using a Delay Differential 

Equation (DDE) – based modeling scheme, and experimentally, using electrical and 

optical characterization techniques such as temporal pulse shape and pulse train analysis 

using a high speed oscilloscope, RF spectrum characterization using an electrical 

spectrum analyzer and optical spectrum characterization using an optical spectrum 

analyzer. 

The studies undertaken as part of this dissertation resulted in a number of novel and 

important findings. A chapter-wise summary is given in the following section. 

6.1 Dissertation Summary 

In chapter 2, a Delay Differential Equation (DDE) model for passive mode-locking in 

two section semiconductor lasers was introduced as a powerful and versatile, yet 

computationally less demanding alternative to conventional Traveling Wave models. The 

following were the key simplifying assumptions made in transforming the Traveling 

Wave model to the DDE model: 

i. The linear cavity was modeled as a ring cavity with unidirectional wave 

propagation. This allowed for a sequential, lumped-element treatment of the light-

matter interaction in each section, thereby simplifying the mathematical 

complications associated with simultaneous, distributed interactions in all 

sections. 



 

158 

ii. The barrier-well-dot formalism of the model, which necessitated a comprehensive 

consideration of dot-to-dot, dot-to-well and other transitions was replaced with a 

simple rate equation formalism involving a linear dependence on macroscopic 

carrier concentrations in the gain and the absorber sections. This led to a dramatic 

simplification in the number of equations and the associated parameter space of 

the model. 

iii. Only ground state lasing was considered. 

As a result of the simplifying assumptions in i. – iii. above, the original DDE model 

(developed in [13] of Chapter 2) comprises a set of three coupled differential equations in 

the time domain, where the evolution of the intracavity field is described by a delay 

equation. Not only does this lead to a considerable reduction in the number of model 

equations, but the simplification of the spatio-temporal evolution of the field to pure 

temporal evolution enables a substantial reduction of computational cost. In addition, the 

parameter space of the model is now reduced to a mere 9 parameters. New equations 

were then derived in order to provide a generalized framework for the transformation of 

experimentally measured quantities – specifically, gain and absorption measurements on 

the device under study using the Segmented Contact method ([19] and [20] of Chapter 2) 

– into dimensionless model parameters to seed the DDE model. This novel scheme 

greatly enhances the practical utility of the model as an elegant and powerful theoretical 

guide to next generation device design and analysis. 

Chapter 3 served as the first demonstration of how the equations derived in Chapter 2 can 

be used to transform measurements performed on an actual device over a range of 

operating conditions into dimensionless inputs for the DDE model, which can then be 
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used as an extremely powerful tool to gain insight into numerous aspects of the output 

dynamics of the device. As an added benefit of deriving equations to transform measured 

quantities into dimensionless model parameters, a novel and innovative technique to 

estimate the carrier relaxation ratio of the device from basic gain and loss measurements 

was shown to provide a viable alternative to conventional pump-probe methods. The 

results of simulation with measurement-extracted parameters indicated the following for 

stable, fundamental mode-locking in quantum dot devices: 

i. Low values of linewidth enhancement factor in the gain and absorber sections at 

or near threshold. 

ii. Low values of unsaturated gain and absorption for stable locking (which would 

suggest operation at higher temperatures).  

Simulation results also enabled invaluable insight into sudden and unexpected trends in 

the output dynamics, such as a sudden flipping of the pulse asymmetry, which are 

typically obscured by autocorrelation measurements. This nonlinear dynamical trend was 

confirmed for the first time with FROG measurements on the device, while the model 

was used to acquire insight into the underlying physical mechanism governing the trend 

by analyzing the interplay between gain and absorber dynamics. This chapter showed 

numerous instances of how several of the properties unique to QD systems are, in fact, 

manifest in the parameters extracted from the device, so that the model, in its original 

form, with no additional equations or parameters can, in itself, act as a robust and 

powerful theoretical framework to analyze device behavior. This paves the way for 

device-specific dynamical studies, as discussed in the following section. 
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Next, in chapter 4, the predictive capabilities of the DDE model were explored in a 

couple of different contexts of practical importance. With a parameter space of just nine 

parameters, seven of which can be experimentally-extracted from measurements on the 

specific device under study, the model offers a powerful theoretical tool to study the 

nonlinear dynamics unique to that device. First, the model was constrained as usual with 

measurement-extracted parameters, and the impact of unequal values of the linewidth 

enhancement factor in the gain and absorber sections on pulse structure was studied. 

While the results showed a degraded pulse structure for all cases with a significant 

difference of linewidth enhancement factors in the gain and absorber sections, the 

instabilities were predicted to be particularly severe for devices with a low gain-

bandwidth profile (characterized by lower values of the spectral filtering coefficient  ) 

operated at lower temperatures, which included a combination of pulse-splitting and 

satellite lobes. For such devices, operation at higher temperatures was predicted to temper 

the instabilities to some extent, but they were still found to be significant. Next, for 

devices with a wide gain-dispersion profile (characterized by higher values of the spectral 

filtering coefficient  ), a difference of the linewidth enhancement factors in the two 

sections predicted a closely-related dynamical instability, split-pulsing, wherein the 

individual pulse structures are characterized by two split lobes, varying in relative 

intensity over each round trip. The dynamic was interpreted as a synergistic interaction 

between the lobes of each pulse with the medium, following which the response of the 

medium was to apply a feedback on the pulse, by perturbing the gain and absorber 

dynamics of the device, thereby conditioning the pulse shape during each round trip, 

resulting in one or the other of the two split lobes growing at the expense of the other. 
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This prediction was confirmed with high-speed oscilloscope measurements of a device 

fabricated with a wide gain-dispersion profile. In the second part of the  chapter, the DDE 

model was shown to offer a robust predictive modeling capability toward achieving 

higher pulse repetition rates for two-section, passively mode-locked quantum dot lasers. 

Consequently, the model was used to first find the regimes of mode-locked operation of a 

given device wherein the device was predicted to exhibit fundamental or harmonic mode 

locking, as a function of the dimensionless model parameters. The model parameters 

were then mapped to externally-controllable parameters (gain section pump current and 

absorber bias voltage), and the regimes of mode-locked operation were represented on a 

map, as a function of the parameters that can be interactively controlled while the device 

is in operation. Excellent agreement was observed between the predictions of the model 

and high-speed oscilloscope measurements of the output pulse dynamics of fundamental 

and second-harmonic mode-locking for two devices with a similar epitaxial-layer 

structure, the first consisting of a 7 mm gain/1 mm absorber section, and the second with 

a 7.2 mm gain/0.8 mm absorber section (both with a 5-μ    d    a     d  d    n). A 

noisy, but stationary pulse-tripling regime was experimentally observed at a bias 

condition predicted by the model for one particular device. The approach not only 

presents an invaluable guideline toward achieving higher repetition rates without the need 

to re-engineer the device, but also points toward the highest repetition rates achievable in 

principle for a given two-section device. 

Finally, in Chapter 5, the effect of externally applied optical feedback at elevated 

temperature was studied experimentally, and a detailed RF and optical spectral 

characterization of the device was carried out as a function of optical delay, feedback 
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ratio and applied absorber bias. It was found that in devices with an inherent spectral hole 

forming-tendency, external optical feedback exhibits complicated dynamics that requires 

careful investigation. In such devices, the Spectral Hole Burning (SHB) Effect and the 

Quantum Confined Stark Effect (QCSE) have been previously shown to compete in the 

free-running configuration. In this dissertation, this interplay has been shown to also 

affect the RF noise performance of the device, so that a deep spectral hole with a sharp 

profile is observed to generally induce a low RF line width and vice-versa. Optical 

feedback adds an additional dimension to this dynamic by either aiding or hindering the 

shape of the spectral hole. In the former case, the shape of the spectral hole is made 

deeper and sharper as a result of the feedback, thereby reducing the RF linewidth. A 

comprehensive understanding of the interplay between the above effects in QDMLLs is 

essential to optimizing high temperature device operation, due to the well- n  n “ a  -

   ”       n  a n and a        n   a   a      a  d       a     . W         n    a        

bias voltages have been shown to be an effective technique to mitigate this peak 

separation and generate better quality pulses, the increasing bias voltage is also likely to 

“ a  -   ” a d          a       and          d   ad         n            an          

device, as seen in this chapter. Under these circumstances, external optical feedback, 

carefully adjusted and optimized to restore the spectral hole to favor the lasing frequency, 

can offer a simple, yet effective solution to generate stable, high quality pulses with good 

RF noise performance. 

6.2 Future Work 

As seen from Chapters 2, 3 and 4, the DDE model for passive mode-locking in 

semiconductor lasers offers a powerful theoretical framework to model QD lasers, where 
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the model parameters are extracted from experimental measurements on the device under 

study. Using this approach, not only does the model capture various properties specific to 

QD lasers, but the fact that the parameter space is constrained to measured values 

provides a simple, yet versatile and powerful framework to investigate the nonlinear 

dynamics specific to the device under study [1, 2]. 

This opens up exciting prospects for future investigation as follows. As we might recall 

from previous chapters, the DDE model has a parameter space of just 9 parameters and 

using the method developed in [1], 7 of them may be extracted from experimental 

measurements on the device, leaving an absolute minimum of two free parameters.  

These two parameters, namely, the linewidth enhancement factors (LEFs) corresponding 

to the gain and saturable absorber sections, are related to pulse quality measures, such as 

pulse chirp, RF phase noise and pulse-to-pulse timing jitter. Thus, reducing the LEF to 

the lowest possible value (ideally 0) is critical to improving pulse quality. Based on the 

Nonlinear Dynamics – formalism of the Delay model, mathematical ideas such as 

bifurcation analyses can be used to study the output dynamics of the system as a function 

of a control parameter that cannot be directly obtained by experimentation – for instance, 

the LEF. The results of such an analysis can then be compared to the output behavior of 

the device measured experimentally, in order to get a sense of the values that the LEF 

might take under a given set of operating conditions.  

Furthermore, recent efforts in optically-injected systems involving a combination of 

experimental measurements and numerical calculations based on a legacy optical – 

injection model have shown the existence of specific operating points with reduced 

sensitivity to systemic fluctuations [3, 4]. These techniques expand upon and complement 
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the recent use of specifically engineered nonlinear oscillators that use nonlinear dynamics 

to suppress oscillator phase noise. Importantly, the efforts highlight the nontrivial 

changes in the response of a nonlinear system subjected to external perturbations, and the 

fact that at specific operating points, nonlinearly-shifted perturbations are suppressed 

while otherwise appearing similar in characteristics to nearby operating points. This has 

obvious technological relevance to numerous frequency-reference applications requiring 

a high degree of precision. It is expected that some of the same techniques, possibly 

applied to the DDE model, could yield valuable information about stable operating points 

with reduced sensitivity to systemic fluctuations.  

Recent work [5-7] has also shown the role of externally applied optical feedback in 

reducing RF linewidth, phase noise and pulse-to-pulse timing jitter. However, despite the 

extensive efforts to study and characterize the RF performance of QD devices, there has 

been very little progress in characterizing the optical pulse characteristics under 

externally applied feedback. The novel formalism developed in this dissertation to seed 

the DDE model with measurement-extracted parameters, can be easily and naturally 

extended to the case of the DDE model incorporating external optical feedback [8]. 

Again, the main advantage of this approach is expected to be the fact that by extracting 

model parameters from the device under study, nonlinear dynamics specific to that 

particular device under a particular set of operating conditions can be studied.  

On the one hand, such an analysis could be used to estimate the values of the LEF that 

the pulse experiences with and without optical feedback, which can then provide valuable 

insight into performance metrics such as the pulse chirp and RF phase noise. But more 

importantly, from the standpoint of technological applications, such a mathematical 
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model could also be used to calculate the lowest possible value for external cavity length 

(feedback arm) for which the output dynamics will still be stable. This information is 

extremely important for the fabrication of a device with a monolithic/on-chip feedback 

arm, because it provides a design guide for how short the external cavity can be made 

theoretically, and hence, how small the monolithic device can be made. Also, this can be 

relevant for the practical design of multi-device systems integrated on a single chip, 

where such an analysis could provide a mathematical limit for the minimum acceptable 

separation between adjacent devices. 

Pulse compression techniques have received considerable attention in recent years, 

because of the basic limitations inherent to semiconductor lasers . Unlike other types of 

lasers (such as solid state and gas lasers), where stimulated emission arises from discrete 

transitions between atomic or molecular levels, the fundamental physical mechanism 

governing stimulated emission in semiconductor lasers is band-to-band transitions, owing 

to their band structure. Thus, pulses generated by mode-locked semiconductor lasers tend 

to be considerably broader than other types of lasers. The narrowest pulses obtainable 

from mode-locked QD lasers for instance, are typically on the order of 1-2 ps (compared 

to < 100 fs easily achievable with solid state lasers). Furthermore, these narrowest pulses 

are usually observed near threshold, so they tend to be very low power pulses. In order to 

get high power pulses, the bias conditions have to be well above threshold, but under 

these circumstances the pulses broaden to several ps. Thus, in order to accomplish the 

dual-objectives of narrow pulses with high peak power for non-linear optics applications, 

pulse compression techniques are important to investigate. 
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For this theme of research, theoretical work could potentially extend the DDE model to 

include a method to more accurately model the LEF experienced by the pulse as it 

propagates through the laser cavity. One possible method of implementing such a 

dynamic variation is to make use of a power-scaling model for the above threshold LEF 

[9, 10]. Experimental work is proposed to extract the pulse chirp from Frequency 

Resolved Optical Gating (FROG) measurements. The goal is to investigate whether pulse 

width reduction and pulse chirp minimization can be accomplished simultaneously, and if 

so, to what extent. The impact of this research can be easily seen to be of considerable 

importance, since pulse chirp minimization is critical to telecommunications applications, 

while pulse width reduction is important for good pulse quality, critical to numerous 

applications, including non-linear optics applications. 
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Appendix A  

The Delay Differential Equation (DDE) Model 

In order to derive the system of differential equations describing passive mode-locking in 

a semiconductor laser, the semiconductor laser cavity is modeled as a 4-mirror ring cavity 

as shown below in Fig. 1 [1]: 

 

Fig. 1: Schematic representation of a passively mode-locked, 4-mirror ring laser cavity. 

Coordinate z is measured along the cavity axis. Interval )( 4332 zzzzzz  corresponds 

to the absorbing (amplifying) section. A spectral filtering (bandwidth limiting) element is placed 

between 5zz  and Lzz  1 , where L is the total cavity length. Intervals 21 zzz   and 

54 zzz   represent passive medium [1]. 

The light-matter interactions governing the evolution of the electric field envelope  ztE ,  

can be represented by a system of traveling-wave equations: 
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Here, the subscript  qkgk   corresponds to the gain (absorber) section. The variables 

 ztN g ,  and  ztNq , describe carrier densities in the gain and absorber sections, 

respectively. The parameters 
tr

qgN , are the gain and absorber carrier densities evaluated at 

transparency threshold. The parameter v  is the group velocity of the propagating light 

field, which is assumed to be constant and equal in all five sections. The parameters 

qgqgqg g ,,, ,,   and qg ,  are, respectively, the linewidth enhancement factors, differential 

gains, transverse modal fill factors and carrier density relaxation rates in the gain and 

absorber sections. The parameter gJ describes injection current in the gain section. For 

the absorber section, 0qJ , since the absorber section is not pumped with an injection 

current, but simply biased with a voltage. 

Since the passive sections do not contain gain or absorber material, and consequently, no 

carrier densities, the evolution of the electric field in these sections may be written as: 

                                                                                                                                      

 (A3) 

Material gain dispersion, including dispersive effects due to artificial elements such as 

distributed Bragg reflectors, are incorporated through the lumped spectral filtering 

section. If  f̂  represents the frequency domain spectral filtering function, the 

transformation of the electric field envelope by this section may be expressed as: 

     5,ˆˆ,ˆ zEfLzE    

 (A4) 

where,  5,ˆ zE   and  LzE 1,ˆ   are the Fourier transforms of  5, ztE  and  LztE 1, , 

respectively. 
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Equations (A1) and (A2) may be re-cast in terms of the normalized 

coordinates     ,, zt , where   vztq   ,  vz q  , and the normalizing 

factor is the absorber recovery time  
qq  1 . The absorber recovery time determines 

the pulse width, which, in turn, sets the pulse repetition rate, so that the advantage of 

making this parameter the characteristic timescale is to normalize all quantities in the 

equation to a critical timescale in the problem, which ensures that there is sufficient 

temporal resolution to obtain complete information for all constituent processes. With 

this coordinate transformation, equations (A1) and (A2) may be expressed as: 
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Similarly, we can use the coordinate transformation above to get expressions for the 

evolution of the carrier densities in the gain and absorber sections: 
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In order to simplify equations (A5) – (A7) and reduce them to an adimensional form, we 

perform the following transformations: 
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 (A8) 

Multiplying both sides of equation (A5) by qggvg  , we have: 
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 - (using the definitions in (A8) above)   

(A9) 

Next, multiplying both sides of (A6) by  
qggvg  , we have: 
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Adding and subtracting a factor of   tr

ggqgg Nvg  2  on the right hand side of the 

above equation, we get: 
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- (using the definitions in (A8) above)   

(A10) 

Using a similar set of transformations, equation (A7) may be re-expressed as: 

 
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 (A11) 

Also, the passive sections have no gain or absorber medium, so that the evolution of the 

optical field in these sections may be expressed as: 

 
0

,








A
 

 (A12) 

From (A12) and the schematic in Fig. 1, we have: 

   12 ,,  AA   

and,    45 ,,  AA   where, again,   vz qkk   . 

 (A13) 

Next, the evolution of the optical field in the gain and absorber sections may be obtained 

by integrating equation (A9) in the corresponding section as follows: 

 Gain section  43   : 
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 
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 (A14) 

 Absorber section  32   : 

 
   






,,

2

1,
An

iA
q

q










 






 

 
 

    



3

2

3

2

,1
2

1

,

,












qq ni

A

A
 

      



QiA q 1

2

1
,ln

3

2

, with     




Qdnq

3

2

, saturable 
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 (A15) 

Next, equations (A10) and (A11) need to be integrated over  to find the evolution 

equations of the saturable gain and absorption: 
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In order to evaluate the integral on the right side of equations (A16) and (A17), we use 

equation (A9) as follows: 
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 (A18) 

Also, 
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 (A19) 

And, from (A19), we get:  

 
 

    2

,

,
,,

2

1,
, 






 An

iA
A qg

qg










 




 

 

 (A20) 

Adding equations (A18) and (A20), we have: 
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Integrating (A21) over the gain and absorber sections, we get: 
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Using (A22) and (A23) in (A16) and (A17) respectively, we get: 
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Now, equation (A4) for the spectral filtering element may be expressed in the time 

domain as: 

      


dsAfTA 51 ,, 
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where,  vLT q  is the normalized cold cavity round trip time. 
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Substituting equations (14) and (15) into (26) and re-expressing the field transformation 

condition in the form     ,, TATA  , we have: 
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Using a Lorentzian line shape function for the spectral filtering element, 

      if exp  

 (A29) 

Substituting (A28) and (A29) into (A27), we get: 
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       n  a  n         d       q a   n (3 )  . .  d   n   n          τ, and    n      

coordinate change   iAA exp , we get: 
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- (since    
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Or, equivalently, 
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 (A31) 

Equation (A31) represents a Delay Differential Equation in A . 

The equations governing the evolution of the saturable gain and absorption are obtained 

from equations (A22) and (A23), by using equations (A13), (A14) and (A15) to express 

   32 ,,,  AA  and  4,A  in terms of    1, AA  . 

The complete system of equations describing passive mode-locking in a semiconductor 

laser may, thus, be expressed in the form: 

 

 

 

 

 (A32) 

Thus, we have transformed the spatio-temporal traveling wave equations for light–matter 

interaction in a passively mode-locked semiconductor laser cavity from equations (A1) 

and (A2) into a system of three coupled differential equations in time alone, one delay 

and two ordinary, as seen from (32). 
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This formalism facilitates the use of the model to analyze the dynamical regimes of 

operation of a passively mode-locked semiconductor laser using standard techniques such 

as bifurcation analysis [1, 2]. 
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